Cho dãy số (un) biết u1 = 1 trang 56 SBT Toán 11

Bài 44 trang 56 SBT Toán 11 Tập 1: Cho dãy số (u­n) biết u1 = 1, un=13un1+1  với n ∈ ℕ*, n ≥ 2. Đặt vn=un32  với n ∈ ℕ*.

a) Chứng minh rằng dãy số (vn) là cấp số nhân. Tìm số hạng đầu, công bội của cấp số nhân đó.

b) Tìm công thức số hạng tổng quát của (vn), (un).

c) Tính tổng S = u1 + u2 + u3 + ... + u10.

Lời giải:

a) Ta có v1=u132=132=12

vn=un32=13un1+132=13un112=13un132=13vn1 với mọi n ∈ ℕ*, n ≥ 2.

Vậy dãy số (vn) là cấp số nhân với số hạng đầu v1=12  và công bội q=13 .

b) Ta có: vn=v1.qn1=12.13n1=12.3n1 .

Từ vn=un32 , suy ra un=vn+32=3212.3n1=3.3n112.3n1=3n12.3n1 .

c) Ta có S = u1 + u2 + u3 + ... + u10

=v1+32+v2+32+v3+32+...+v10+32

= (v1 + v2 + v3 + ... + v10) + 32.10

 Cho dãy số (un) biết u1 = 1 trang 56 SBT Toán 11

Lời giải SBT Toán 11 Bài 3: Cấp số nhân hay khác:

Xem thêm lời giải Sách bài tập Toán 11 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:


Giải bài tập lớp 11 Cánh diều khác