Thiết kế của một chiếc cổng có hình parabol với chiều cao 5 m và khoảng cách giữa hai chân cổng là 4 m

Bài 12 trang 15 SBT Toán 10 Tập 2: Thiết kế của một chiếc cổng có hình parabol với chiều cao 5 m và khoảng cách giữa hai chân cổng là 4 m.

a) Chọn trục hoành là đường thẳng nối hai chân cổng, gốc toạ độ tại một chân cổng, chân cổng còn lại có hoành độ dương, đơn vị là 1 m. Hãy viết phương trình của vòm cổng.

b) Người ta cần chuyển một thùng hàng hình hộp chữ nhật với chiều cao 3 m. Chiều rộng của thùng hàng tối đa là bao nhiêu để thùng có thể chuyển lọt qua được cổng?

Lưu ý: Đáp số làm tròn đến hàng phần trăm.

Lời giải:

Thiết kế của một chiếc cổng có hình parabol với chiều cao 5 m và khoảng cách giữa hai chân cổng là 4 m

a) Đặt gốc tọa độ tại một chân cổng như hình vẽ trên.

Vì chiếc cổng có dạng parabol nên phương trình y = ax2 + bx + c của đường viền cổng.

Do một chân cổng có tọa độ ( 0;0 ) nên ta có c = 0 (1).

Khoảng cách giữa hai chân cổng là 4 m nên chân cổng còn lại có tọa độ ( 4;0 ), ta có 16a + 4b + c = 0 (2)

Cổng có chiều cao 5 m nên tọa độ đỉnh cổng là ( 2; 5 ), ta có: 4a + 2b + c = 5 (3)

Thay (1) vào (2) và (3) ta được hệ phương trình:

Thiết kế của một chiếc cổng có hình parabol với chiều cao 5 m và khoảng cách giữa hai chân cổng là 4 m

Từ đó suy ra a = –1,25; b = 5 và c = 0.

Vậy phương trình của vòm cổng là y = –1,25x2 + 5x

b) Ta xác định các hoành độ x mà tại đó vòm cổng cao hơn thùng hàng bằng cách giải bất phương trình y = –1,25x2 + 5x ≥ 3 hay –1,25x2 + 5x – 3 ≥ 0.

Tam thức bậc hai f ( x ) = –1,25x2 + 5x – 3 có ∆ = 52 – 4.(– 1,25).(– 3) = 10 > 0 nên f(x) có hai nghiệm phân biệt x1 = 0,74 và x2 = 3,26, a = –1,25 < 0 nên f ( x ) ≥ 0 khi và chỉ khi 0,74 ≤ x ≤ 3,26.

Vậy chiều rộng tối đa của thùng hàng là 3,26 – 0,74 = 2,52 m.

Lời giải SBT Toán 10 Bài 2: Giải bất phương trình bậc hai một ẩn hay khác:

Xem thêm các bài giải sách bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Chân trời sáng tạo khác