Cho tam giác ABC với ba cạnh a, b, c Chứng minh rằng: cosA/a + cosB/b + cosC/c = (a^2+b^2+c^2)/2abc

Bài 1 trang 81 SBT Toán 10 Tập 1: Cho tam giác ABC với ba cạnh a, b, c. Chứng minh rằng: cosAa+cosBb+cosCc=a2 + b2 + c22abc.

Lời giải:

Theo định lí côsin: a2 = b2 + c2 – 2bccosA

cosA = b2+c2a22bc

cosAa = b2+c2a22abc.

Tương tự ta có:

cosB b = a2+c2b22abccosCc = a2+b2c22abc

Như vậy: cosAa+cosBb+cosCc = b2+c2a22abc + a2+c2b22abc + a2+c2b22abc

cosAa+cosBb+cosCc=a2 + b2 + c22abc. ( ĐPCM ).

Xem thêm các bài giải sách bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Chân trời sáng tạo khác