Toán 7 trang 70 Tập 2 Cánh diều, Chân trời sáng tạo
Trọn bộ lời giải bài tập Toán 7 trang 70 Tập 2 Cánh diều, Chân trời sáng tạo sẽ giúp học sinh dễ dàng làm bài tập Toán lớp 7 trang 70. Bạn vào trang hoặc Xem lời giải để theo dõi chi tiết.
- Toán lớp 7 trang 70 Tập 2 (sách mới):
- Toán lớp 7 trang 70 Tập 1 (sách mới):
Lưu trữ: Giải Toán lớp 7 trang 70 sách cũ
Video Giải Bài 33 trang 70 SGK Toán 7 tập 2 - Cô Nguyễn Hà Nguyên (Giáo viên hoconline)
Bài 33 (trang 70 SGK Toán 7 tập 2): Cho hai đường thẳng xx', yy' cắt nhau tại O.
a) Chứng minh hai tia phân giác Ot, Ot' của một cặp góc kề bù tạo thành một góc vuông.
b) Chứng minh rằng: Nếu M thuộc đường thẳng Ot hoặc thuộc đường thẳng Ot' thì M cách đều hai đường thẳng xx' và yy'.
c) Chứng minh rằng: Nếu điểm M cách đều hai đường thẳng xx', yy' thì M thuộc đường thẳng Ot hoặc thuộc đường thẳng Ot'.
d) Khi M ≡ O thì khoảng cách từ M đến xx' và yy' bằng bao nhiêu?
e) Em có nhận xét gì về tập hợp các điểm cách đều hai đường thẳng cắt nhau xx', yy'.
Hình 33
Lời giải
Vậy hai tia phân giác của hai góc kề bù tạo thành một góc vuông.
b) – TH1: M ∈ Ot
M ∈ Ot do Ot là phân giác của
nên M cách đều hai tia Ox và Oy
⇒ M cách đều xx’, yy’.
Tương tự cho M thuộc tia đối của tia Ot.
- TH2: M ∈ Ot’
M ∈ Ot’ do Ot’ là phân giác của
nên M cách đều hai tia Ox, Oy’
⇒ M cách đều xx’, yy’.
Tương tự cho M thuộc tia đối của tia Ot’.
Vậy với mọi M thuộc đường thẳng Ot hoặc đường thẳng Ot’, M cách đều xx’ và yy’.
c) Ta có M luôn thuộc miền trong của một trong bốn góc:
Mà M cách đều xx’ và yy’ nên theo định lý 2 ta có:
+ Nếu M thuộc miền trong góc xOy ⇒ M thuộc tia Ot.
+ Nếu M thuộc miền trong góc xOy’ ⇒ M thuộc tia Ot’.
+ Nếu M thuộc miền trong góc y’Ox’ ⇒ M thuộc tia đối của tia Ot.
+ Nếu M thuộc miền trong góc x’Oy ⇒ M thuộc tia đối của tia Ot’ .
d) Khi M ≡ O thì khoảng cách từ M đến xx’, yy’ bằng 0.
e) Từ các câu trên ta có nhận xét: tập hợp tất cả các điểm cách đều hai đường thẳng cắt nhau xx’, yy’ thuộc hai đường thẳng vuông góc nhau lần lượt là phân giác của các góc tạo bởi hai đường thẳng cắt nhau đó.
Kiến thức áp dụng
Điểm nằm trên tia phân giác của một góc thì cách đều hai cạnh của góc đó.
+ Dựa vào định lí đảo : Điểm nằm bên trong một góc và cách đều hai cạnh của góc thì nằm trên tia phân giác của góc đó.
Các bài giải bài tập Toán 7 Bài 5 khác:
- Mục lục Chương III: Quan Hệ Giữa Các Yếu Tố Trong Tam Giác. Các Đường Thẳng Đồng Quy Của Tam Giác
- Bài 5: Tính chất tia phân giác của một góc - Luyện tập (trang 70-71)
Đã có lời giải bài tập lớp 7 sách mới:
- (mới) Giải bài tập Lớp 7 Kết nối tri thức
- (mới) Giải bài tập Lớp 7 Chân trời sáng tạo
- (mới) Giải bài tập Lớp 7 Cánh diều
- Lớp 7 - Kết nối tri thức
- Soạn văn lớp 7 (hay nhất) - KNTT
- Giải sgk Toán lớp 7 - KNTT
- Giải Tiếng Anh lớp 7 - KNTT
- Giải Khoa học tự nhiên lớp 7 - KNTT
- Giải sgk Lịch Sử lớp 7 - KNTT
- Giải sgk Địa Lí lớp 7 - KNTT
- Giải Giáo dục công dân lớp 7 - KNTT
- Giải sgk Công nghệ lớp 7 - KNTT
- Giải Tin học lớp 7 - KNTT
- Giải Hoạt động trải nghiệm lớp 7 - KNTT
- Lớp 7 - Chân trời sáng tạo
- Soạn văn lớp 7 (hay nhất) - CTST
- Giải sgk Toán lớp 7 - CTST
- Giải Tiếng Anh lớp 7 - CTST
- Giải Khoa học tự nhiên lớp 7 - CTST
- Giải Lịch Sử lớp 7 - CTST
- Giải Địa Lí lớp 7 - CTST
- Giải Giáo dục công dân lớp 7 - CTST
- Giải Công nghệ lớp 7 - CTST
- Giải Tin học lớp 7 - CTST
- Giải Hoạt động trải nghiệm lớp 7 - CTST
- Lớp 7 - Cánh diều
- Soạn văn lớp 7 (hay nhất) - CD
- Giải sgk Toán lớp 7 - CD
- Giải Tiếng Anh lớp 7 - CD
- Giải Khoa học tự nhiên lớp 7 - CD
- Giải sgk Lịch Sử lớp 7 - CD
- Giải Địa Lí lớp 7 - CD
- Giải Giáo dục công dân lớp 7 - CD
- Giải Công nghệ lớp 7 - CD
- Giải Tin học lớp 7 - CD
- Giải Hoạt động trải nghiệm lớp 7 - CD