Giải Toán 12 trang 44 Kết nối tri thức, Chân trời sáng tạo, Cánh diều



Trọn bộ lời giải bài tập Toán 12 trang 44 Kết nối tri thức, Chân trời sáng tạo, Cánh diều sẽ giúp học sinh lớp 12 dễ dàng làm bài tập Toán 12 trang 44. Bạn vào trang hoặc Xem lời giải để theo dõi chi tiết.

- Toán lớp 12 trang 44 Tập 1 (sách mới):

- Toán lớp 12 trang 44 Tập 2 (sách mới):




Lưu trữ: Giải Toán 12 trang 44 (sách cũ)

Bài 4 (trang 44 SGK Giải tích 12): Bằng cách khảo sát hàm số, hãy tìm số nghiệm của các phương trình sau:

a) x3 - 3x2 + 5 = 0 ;

b) -2x3 + 3x2 - 2 = 0 ;

c) 2x2 - x4 = -1

Lời giải:

a) Xét y = f(x) = x3 - 3x2 + 5 (1)

- TXĐ: D = R

- Sự biến thiên:

+ Chiều biến thiên:

f'(x) = 3x2 - 6x = 3x(x - 2)

f'(x) = 0 ⇔ x = 0 ; x = 2

+ Giới hạn:

Giải bài 4 trang 44 sgk Giải tích 12 | Để học tốt Toán 12

+ Bảng biến thiên:

Giải bài 4 trang 44 sgk Giải tích 12 | Để học tốt Toán 12

- Đồ thị:

Giải bài 4 trang 44 sgk Giải tích 12 | Để học tốt Toán 12

Đồ thị hàm số y = f(x) cắt trục hoành tại 1 điểm duy nhất.

⇒ phương trình x3 - 3x2 + 5 = 0 chỉ có 1 nghiệm duy nhất.

b) Xét hàm số y = f(x) = -2x3 + 3x2 – 2.

- TXĐ: D = R

- Sự biến thiên:

+ Chiều biến thiên:

y' = -6x2 + 6x = -6x(x - 1)

y' = 0 ⇔ x = 0 ; x = 1

+ Giới hạn:

Giải bài 4 trang 44 sgk Giải tích 12 | Để học tốt Toán 12

+ Bảng biến thiên:

Giải bài 4 trang 44 sgk Giải tích 12 | Để học tốt Toán 12

- Đồ thị:

Giải bài 4 trang 44 sgk Giải tích 12 | Để học tốt Toán 12

Đồ thị hàm số y = f(x) cắt trục hoành tại 1 điểm duy nhất

⇒ phương trình f(x) = 0 có nghiệm duy nhất.

Vậy phương trình -2x3 + 3x2 - 2 = 0 chỉ có một nghiệm.

c) Xét hàm số y = f(x) = 2x2 - x4

- TXĐ: D = ℝ

- Sự biến thiên:

+ Chiều biến thiên:

y' = 4x - 4x3 = 4x(1 - x2)

y' = 0 ⇔ x = 0 ; x = ±1

+ Giới hạn:

Giải bài 4 trang 44 sgk Giải tích 12 | Để học tốt Toán 12

+ Bảng biến thiên:

Giải bài 4 trang 44 sgk Giải tích 12 | Để học tốt Toán 12

- Đồ thị:

Giải bài 4 trang 44 sgk Giải tích 12 | Để học tốt Toán 12

Đồ thị hàm số y = f(x) cắt đường thẳng y = -1 tại hai điểm.

Suy ra phương trình f(x) = -1 có hai nghiệm phân biệt.

Vậy phương trình đã cho có 2 nghiệm phân biệt.

Kiến thức áp dụng

+ Số nghiệm của phương trình f(x) = m phụ thuộc vào số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = m.

Tham khảo lời giải các bài tập Toán 12 bài 5 khác:

Các bài giải Toán 12 Giải tích Tập 1 Chương 1 khác:


khao-sat-su-bien-thien-va-ve-do-thi-cua-ham-so.jsp


Giải bài tập lớp 12 sách mới các môn học