Bài 85 trang 172 SBT Toán 9 Tập 1



Ôn tập chương II

Bài 85 trang 172 Sách bài tập Toán 9 Tập 1: Cho đường tròn (O), đường kính AB, điểm M thuộc đường tròn. Vẽ điểm N đối xứng với A qua M. BN cắt đường tròn ở C. Gọi E là giao điểm của AC và Bm.

a. Chứng minh rằng NE ⊥ AB

b. Gọi F là điểm đối xứng với E qua M. Chứng minh rằng FA là tiếp tuyến của đường tròn (O)

c. Chứng minh rằng FN là tiếp tuyến của đường tròn (B; BA)

Lời giải:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

a. Tam giác ABM nội tiếp trong đường tròn (O) có AB là đường kính nên vuông tại M

Suy ra: AN ⊥ BM

Tam giác ABC nội tiếp trong đường tròn (O) có AB là đường kính nên vuông tại C

Suy ra: AC ⊥ BN

Tam giác ABN có hai đường cao AC và BM cắt nhau tại E nên E là trực tâm của tam giác ABN

Suy ra: NE ⊥ AB

b. Ta có: MA = MN (tính chất đối xứng tâm)

ME = MF (tính chất đối xứng tâm)

Tứ giác AENF có hai đường chéo cắt nhau tại trung điểm của mỗi đường nên nó là hình bình hành

Suy ra: AF // NE

Mà NE ⊥ AB (chứng minh trên)

Suy ra: AF ⊥ AB tại A

Vậy FA là tiếp tuyến của đường tròn (O).

c. Trong tam giác ABN ta có: AN ⊥ BM và AM = MN

Suy ra tam giác ABN cân tại B

Suy ra BA = BN hay N thuộc đường tròn (B; BA)

Tứ giác AFNE là hình bình hành nên AE // FN hay FN // AC

Mặt khác: AC ⊥ BN (chứng minh trên)

Suy ra: FN ⊥ BN tại N

Vậy FN là tiếp tuyến của đường tròn (B; BA)

Các bài giải bài tập sách bài tập Toán 9 (SBT Toán 9) khác:

Xem thêm các loạt bài Để học tốt Toán lớp 9 hay khác:


on-tap-chuong-2-phan-hinh-hoc.jsp


Giải bài tập lớp 9 sách mới các môn học