Bài 52 trang 61 SBT Toán 9 Tập 2



Bài 8: Giải bài toán bằng cách lập phương trình

Bài 52 trang 61 Sách bài tập Toán 9 Tập 2: Trong một phòng họp có 360 ghế được xếp thành các dãy và số ghế trong mỗi dãy đều bằng nhau. Có một lần phòng họp phải xếp thêm một dãy ghế và mỗi dãy tăng một ghế (số ghế trong các dãy vẫn bằng nhau) để đủ chỗ cho 400 đại biểu. Hỏi bình thường trong phòng có bao nhiêu dãy ghế?

Lời giải:

Gọi x (dãy) là số dãy ghế ban đầu của phòng họp.

Điều kiện: x ∈N*

Khi đó số ghế ngồi trong một dãy là: 360/x (ghế)

số dãy ghế sau khi tăng là x + 1 (dãy)

số ghế ngồi trong một dãy sau khi tăng là:Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Theo đề bài, ta có phương trình: Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

⇔ 400x – 360(x + 1) = x(x + 1)

⇔ 400x – 360x – 360 = x2 + x ⇔ x2 – 39x + 360 = 0

∆ = (-39)2 – 4.1.360 = 1521 – 1440 = 81 > 0

√∆ = √81 = 9

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Cả hai giá trị của x đều thỏa mãn điều kiện bài toán.

Vậy bình thường trong phòng có 15 hoặc 24 dãy ghế.

Các bài giải bài tập sách bài tập Toán 9 (SBT Toán 9) khác:

Xem thêm các loạt bài Để học tốt Toán lớp 9 hay khác:


bai-8-giai-bai-toan-bang-cach-lap-phuong-trinh.jsp


Giải bài tập lớp 9 sách mới các môn học