Cho đường tròn (O) có các dây AB và CD bằng nhau, các tia AB và CD cắt nhau tại điểm E nằm



Video Bài 13 trang 106 SGK Toán 9 Tập 1 - Cô Ngô Hoàng Ngọc Hà (Giáo viên VietJack)

Bài 13 trang 106 SGK Toán lớp 9 Tập 1: Cho đường tròn (O) có các dây AB và CD bằng nhau, các tia AB và CD cắt nhau tại điểm E nằm bên ngoài đường tròn. Gọi H và K theo thứ tự là trung điểm của AB và CD. Chứng minh rằng:

a) EH = EK

b) EA = EC.

Lời giải:

Để học tốt Toán 9 | Giải bài tập Toán 9

a) Nối OE ta có: AB = CD

=> OH = OK (Định lí 3)

Hai tam giác vuông OEH và OEK có:

    OE là cạnh chung

    OH = OK

=> ΔOEH = ΔOEK (cạnh huyền, cạnh góc vuông)

=> EH = EK         (1). (đpcm)

b) Ta có: OH ⊥ AB

Để học tốt Toán 9 | Giải bài tập Toán 9

Mà AB = CD (gt) suy ra AH = KC     (2)

Từ (1) và (2) suy ra:

EA = EH + HA = EK + KC = EC

Vậy EA = EC. (đpcm)

Xem thêm các bài giải bài tập Toán 9 bài 3 khác:


bai-3-lien-he-giua-day-va-khoang-cach-tu-tam-den-day.jsp


Giải bài tập lớp 9 sách mới các môn học