Đề thi môn Toán vào lớp 10 năm 2024 có đáp án (Trắc nghiệm - Tự luận - Đề 5)



Đề thi môn Toán vào lớp 10 năm 2024 có đáp án (Trắc nghiệm - Tự luận - Đề 5)

Xem thử Đề ôn vào 10 Xem thử Đề vào 10 Hà Nội Xem thử Đề vào 10 TP.HCM Xem thử Đề vào 10 Đà Nẵng

Chỉ từ 150k mua trọn bộ Đề ôn thi vào 10 môn Toán năm 2024 bản word có lời giải chi tiết:

Sở Giáo dục và Đào tạo ....

Kì thi tuyển sinh vào lớp 10

Môn thi: Toán (hệ Công lập)

Thời gian làm bài: 120 phút

Phần I. Trắc nghiệm (2 điểm)

Câu 1: Điều kiện xác định của biểu thức Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án là:

A.x ≠ 0    B.x ≥ 1    C.x ≥ 1 hoặc x < 0    D.0 < x ≤ 1

Câu 2: Đường thẳng 2x + 3y = 5 đi qua điểm nào trong các điểm sau đây

A. ( 1; -1)    B. ( 2; -3)    C. ( -1; 1)     D. (- 2; 3)

Câu 3: Cho phương trình x – 2y = 2 (1). Phương trình nào trong các phương trình sau đây kết hợp với (1) để được phương trình vô số nghiệm

A.Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp ánx + y = -1    B. Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp ánx - y = -1

C.2x - 3y = 3   D.2x - 4y = -4

Câu 4: Tọa độ giao điểm của (P) y = Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án x2 và đường thẳng (d) y = Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án + 3

A. (2; 2)   B. ( 2; 2) và (0; 0)

C.(-3; Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án)    D.(2; 2) và (-3; Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án)

Câu 5: Giá trị của k để phương trình x2 + 3x + 2k = 0 có 2 nghiệm trái dấu là:

A. k > 0   B. k < 0   C. k > 2    D. k < 2

Câu 6: Cho tam giác ABC vuông tại A có AB : AC = 3 : 4 và đường cao AH bằng 9 cm. Khi đó độ dài đoạn thẳng HC bằng:

A. 12 cm    B. 9 cm     C. 6 cm    D. 15 cm

Câu 7: Cho hai đường tròn (O; 3cm) và (O; 4cm) có OO' = 5 cm. Vị trí tương đối của 2 đường tròn là:

A. Hai đường tròn tiếp xúc ngoài với nhau

B. Hai đường tròn tiếp xúc trong với nhau

C. Hai đường tròn không giao nhau

D. Hai đường tròn cắt nhau

Câu 8: Thể tích hình cầu thay đổi như thế nào nếu bán kính hình cầu tăng gấp 2 lần

A. Tăng gấp 16 lần     B. Tăng gấp 8 lần

C. Tăng gấp 4 lần     D. Tăng gấp 2 lần

Phần II. Tự luận

Bài 1: (2 điểm)

1) Thu gọn biểu thức

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

2) giải phương trình và hệ phương trình sau:

a) 3x2 + 5x - 8 = 0

b) (x2 + 5)2 = 3(x2 + 5) + 4

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Bài 2: (1,5 điểm) Trong mặt phẳng tọa độ Oxy cho Parabol (P) : y = x2 và đường thẳng (d) :

y = 2mx – 2m + 1

a) Với m = -1 , hãy vẽ 2 đồ thị hàm số trên cùng một hệ trục tọa độ

b) Tìm m để (d) và (P) cắt nhau tại 2 điểm phân biệt : A (x1; y1 );B(x2; y2) sao cho tổng các tung độ của hai giao điểm bằng 2 .

Bài 3: (1 điểm) Rút gọn biểu thức sau:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Tìm x để A < 0

Bài 4: (3,5 điểm) Cho đường tròn (O) có dây cung CD cố định. Gọi M là điểm nằm chính giữa cung nhỏ CD. Đường kính MN của đường tròn (O) cắt dây CD tại I. Lấy điểm E bất kỳ trên cung lớn CD, (E khác C,D,N); ME cắt CD tại K. Các đường thẳng NE và CD cắt nhau tại P.

a) Chứng minh rằng :Tứ giác IKEN nội tiếp

b) Chứng minh: EI.MN = NK.ME

c) NK cắt MP tại Q. Chứng minh: IK là phân giác của góc EIQ

d) Từ C vẽ đường thẳng vuông góc với EN cắt đường thẳng DE tại H. Chứng minh khi E di động trên cung lớn CD (E khác C, D, N) thì H luôn chạy trên một đường cố định.

Phần I. Trắc nghiệm

1.C2.D3.A4.D
5.B6.A7.D8.B

Phần II. Tự luận

Bài 1:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

2) a) 3x2 + 5x - 8 = 0

Δ = 52 - 4.3.(-8) = 121 => √Δ = 11

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Vậy phương trình đã cho có tập nghiệm là S = Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

b) (x2 + 3)2 = 3(x2 + 3) + 4

Đặt x2 + 3 = t (t ≥ 3), phương trình đã cho trở thành

t2 - 3t - 4 = 0

Δ = 32 - 4.(-4) = 25> 0

Phương trình có 2 nghiệm phân biệt :

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Do t ≥ 3 nên t = 4

Với t = 4, ta có: x2 + 3 = 4 ⇔ x2 = 1 ⇔ x = ±1

Vậy phương trình đã cho có 2 nghiệm x = ± 1

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Bài 2:

Trong mặt phẳng tọa độ Oxy cho Parabol (P) : y = x2 và đường thẳng (d) :

y = 2mx – 2m + 1

a) Với m = 1; (d): y = 2x – 1

Bảng giá trị

x01
y = 2x – 1-11

(P) : y = x2

Bảng giá trị

x -2 -1 0 1 2
y = x2 4 1 0 1 4

Đồ thị hàm số y = x2 là đường parabol nằm phía trên trục hoành, nhận Oy làm trục đối xứng và nhận điểm O(0; 0) là đỉnh và điểm thấp nhất

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

b) cho Parabol (P) : y = x2 và đường thẳng (d) :

y = 2mx – 2m + 1

Phương trình hoành độ giao điểm của (P) và (d) là:

x2 = 2mx - 2m + 1

⇔ x2 - 2mx + 2m - 1 = 0

Δ' = m2 - (2m - 1)=(m - 1)2

(d) và (P) cắt nhau tại 2 điểm phân biệt khi và chỉ khi phương trình hoành độ giao điểm có 2 nghiệm phân biệt

⇔ Δ' > 0 ⇔ (m - 1)2 > 0 ⇔ m ≠ 1

Khi đó (d) cắt (P) tại 2 điểm A(x1, 2mx1 – 2m + 1) ; B ( x2, 2mx2 – 2m + 1)

Theo định lí Vi-et ta có: x1 + x2 = 2m

Từ giả thiết đề bài, tổng các tung độ giao điểm bằng 2 nên ta có:

2mx1 – 2m + 1 + 2mx2 – 2m + 1 = 2

⇔ 2m (x1 + x2) – 4m + 2 = 2

⇔ 4m2 - 4m = 0 ⇔ 4m(m - 1) = 0

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Đối chiếu với điều kiện m ≠ 1, thì m = 0 thỏa mãn.

Bài 3:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

A > 0 ⇔ Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án > 0 ⇔ 5 - 5√x > 0 ⇔ √x < 1 ⇔ x < 1

Vậy A > 0 khi 0 < x < 1

Bài 4:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

a) Do M là điểm chính giữa cung CD nên OM ⊥ CD

=> ∠KIN = 90o

Xét tứ giác IKEN có:

∠KIN = 90o

∠KEN = 90o (góc nội tiếp chắn nửa đường tròn)

=> ∠KIN + ∠KEN = 180o

=> Tứ giác IKEN là tứ giác nội tiếp

b) Xét ΔMEI và ΔMNK có:

∠NME là góc chung

∠IEM = ∠MNK ( 2 góc nội tiếp cùng chắn cung IK)

=> ΔMEI ∼ ΔMNK (g.g)

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án=>EI.MN = NK.ME

c) Xét tam giác MNP có:

ME ⊥ NP; PI ⊥ MN

ME giao PI tại K

=> K là trực tâm của tam giác MNP

=> ∠NQP = 90o

Xét tứ giác NIQP có:

∠NQP = 90o

∠NIP = 90o

=> 2 đỉnh Q, I cùng nhìn cạnh NP dưới 1 góc bằng nhau

=> tứ giác NIQP là tứ giác nội tiếp

=> ∠QIP = ∠QNP (2 góc nội tiếp cùng chắn cung PQ)(1)

Mặt khác IKEN là tứ giác nội tiếp

=> ∠KIE = ∠KNE (2 góc nội tiếp cùng chắn cung KE)(2)

Từ (1) và (2)

=> ∠QIP = ∠KIE

=> IE là tia phân giác của ∠QIE

d) Ta có:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Mà ∠DEM = ∠MEC (2 góc nội tiếp chắn 2 cung bằng nhau)

=> ∠EHC = ∠ECH => ΔEHC cân tại E

=> EN là đường trung trực của CH

Xét đường tròn (O) có: Đường kính OM vuông góc với dây CD tại I

=> NI là đường trung trực của CD => NC = ND

EN là đường trung trực của CH => NC = NH

=> N là tâm đường tròn ngoại tiếp tam giác DCH

=> H ∈ (N, NC)

Mà N, C cố định => H thuộc đường tròn cố định

Xem thử Đề ôn vào 10 Xem thử Đề vào 10 Hà Nội Xem thử Đề vào 10 TP.HCM Xem thử Đề vào 10 Đà Nẵng

Xem thêm các đề thi vào lớp 10 môn Toán có đáp án hay khác:

Lời giải bài tập lớp 10 sách mới:


de-thi-mon-toan-vao-10-trac-nghiem-tu-luan.jsp


Đề thi, giáo án lớp 9 sách mới các môn học