Đề thi môn Toán vào lớp 10 năm 2024 có đáp án (Trắc nghiệm - Tự luận - Đề 4)



Đề thi môn Toán vào lớp 10 năm 2024 có đáp án (Trắc nghiệm - Tự luận - Đề 4)

Xem thử Đề ôn vào 10 Xem thử Đề vào 10 Hà Nội Xem thử Đề vào 10 TP.HCM Xem thử Đề vào 10 Đà Nẵng

Chỉ từ 150k mua trọn bộ Đề ôn thi vào 10 môn Toán năm 2024 bản word có lời giải chi tiết:

Sở Giáo dục và Đào tạo ....

Kì thi tuyển sinh vào lớp 10

Môn thi: Toán (hệ Công lập)

Thời gian làm bài: 120 phút

Phần I. Trắc nghiệm (2 điểm)

Câu 1: Trong các hàm số sau, hàm số nào là hàm số bậc nhất

A. y = 1 - Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án    B. y = Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án - 2x

C. y = x2 + 1     D. y = √x + 1

Câu 2: Hệ phương trình Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án có nghiệm là:

A. ( 1 ; 2)     B. ( 3; 3)    C. ( -1; 1)     D. (-3; 0)

Câu 3: Cho hàm số y = - x2. Kết luận nào sau đây là đúng:

A. y = 0 là giá trị lớn nhất của hàm số

B. y = 0 là giá trị nhỏ nhất của hàm số

C. Không xác định được giá trị lớn nhất của hàm số trên

D. Xác định được giá trị nhỏ nhất của hàm số trên

Câu 4: Cho phương trình bậc hai x2 – 2( 2m +1)x + 2m = 0. Hệ số b' của phương trình là:

A. m + 1    B. m    C. 2m +1     D. – (2m +1)

Câu 5: Phương trình x2 + 2x + a – 2 = 0 vô nghiệm khi:

A. a > 3   B. a < 3     C. a ≥ 3     D. a ≤ 3

Câu 6: Đường tròn là hình:

A. Không có trục đối xứng    B. Có một trục đối xứng

C. Có hai trục đối xứng    D. Có vô số trục đối xứng

Câu 7: Tam giác ABC vuông tại A, có AB = 18 cm, AC = 24 cm. Bán kính đường tròn ngoại tiếp tam giác đó bằng

A. 30 cm    B. 20 cm     C. 15 cm   D. 10 cm

Câu 8: Một hình trụ có chiều cao bằng 8 cm và bán kính đáy bằng 4 cm thì diện tích toàn phần bằng:

A.336πcm2   B.96πcm2   C.168πcm2    D.48πcm2

Phần II. Tự luận

Bài 1: (1,5 điểm)

1) Thực hiện phép tính: 4√24 - 3√54 + 5√6 - √150

2) Cho biểu thức

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

a) Rút gọn A

b) Tìm x nguyên để A nguyên

Bài 2: (1,5 điểm)

1) Cho hàm số: y = - 2x + 3 có đồ thị (d1) và hàm số y = x – 1 có đồ thị (d2). Xác định hệ số a và b biết đường thẳng (d3) y = ax + b song song với (d2) và cắt (d1) tại điểm nằm trên trục tung.

2) giải hệ phương trình sau:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Bài 3: (1 điểm) Cho phương trình ( m là tham số)

x2 - (2m - 1)x - 2m - 1 = 0 (1)

a) Chứng tỏ phương trình (1) luôn có 2 nghiệm phân biệt với mọi m

b) Tìm m để phương trình (1) có hai nghiệm x1, x2 thỏa mãn

x13 - x23 + 2(x12 - x22 ) = 0

Bài 4: (3,5 điểm) Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O) có các đường cao AD, BE, CF, trực tâm H. Gọi I, K lần lượt là các trung điểm của các đoạn BC và AH

a) Chứng minh tứ giác BFEC và BFHD nội tiếp

b) Chứng minh DH. DA = DB. DC

c) Chứng minh 5 điểm E, K, F, D, I thuộc một đường tròn

d) Đường thẳng EF cắt BC tại M. Chứng minh

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Bài 5: (0,5 điểm) Cho x, y thỏa mãn 0 < x < 1; 0 < y < 1 và Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án = 1

Tìm giá trị của biểu thức

P = x + y + Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Phần I. Trắc nghiệm

1.B 2.C 3.A 4.D
5.A 6.D 7.C 8.B

Phần II. Tự luận

Bài 1:

1) 4√24 - 3√54 + 5√6 - √150

= 4√4.6 - 3.√9.6 + 5√6 - √25.6

= 8√6 - 9√6 + 5√6 - 5√6

= -√6

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

A nguyên ⇔ Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp ánnguyên ⇔ √x + 3 là ước của 11

⇔ √x + 3 ∈ {±1 ; ±11}

Ta có bảng sau:

√x + 3 -11 -1 1 11
√x -14 -4 -2 8
x X X X 64

Vậy x = 64 thì A nhận giá trị nguyên.

Bài 2:

1): y = - 2x + 3 có đồ thị (d1); hàm số y = x – 1 có đồ thị (d2).

Đường thẳng (d3) y = ax + b song song với (d2) nên a =1

(d3) : y = x + b

Đường thẳng (d1) y = - 2x + 3 cắt trục tung tại điểm (0; 3)

(d3) cắt (d1) tại điểm nằm trên trục tung nên (d3) đi qua điểm (0; 3)

=> 3 = 0 + b => b = 3

Vậy phương trình đường thẳng (d3) là y = x + 3

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

ĐKXĐ: x + y ≠ 0; 2x + y ≠ 0

Đặt Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án, hệ phương trình trở thành:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Vậy hệ phương trình đã cho có nghiệm (x, y) = (0; 1)

Bài 3:

x2 - (2m - 1)x - 2m - 1 = 0 (1)

a) Δ = (2m - 1)2 - 4(-2m - 1)

= 4m2 - 4m + 1 + 8m + 4 = 4m2 + 4m + 1 + 4

= (2m + 1)2 + 4 > 0 ∀m

Vậy phương trình luôn có 2 nghiệm phân biệt với mọi m

b) Gọi x1, x2 là 2 nghiệm của phương trình (1)

Theo định lí Vi-ét ta có:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Vậy với m = 0 hoặc Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án thì pt (1) có hai nghiệm thỏa mãn yêu cầu của đề bài

Bài 4:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

a) Xét tứ giác BFEC có:

∠BFC = 90o (CF là đường cao)

∠BEC = 90o (BE là đường cao)

=> 2 đỉnh E và F cùng nhìn cạnh BC dưới 2 góc bằng nhau

=> Tứ giác BFEC là tứ giác nội tiếp

Xét tứ giác BFHD có:

∠BFH = 90o (CF là đường cao)

∠BDH = 90o (AD là đường cao)

=> ∠BFH + ∠BDH = 180o

=> Tứ giác BFHD là tứ giác nội tiếp

b) Xét ΔDHC và ΔDBA có:

∠HDC = ∠BDA = 90o

∠DHC = ∠DBA ( cùng bù với góc ∠FHD )

=> ΔDHC ∼ ΔDBA (g.g)

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án => DH.DA = DC.DB

c) Ta có: ∠KDI = 90o (AD là đường cao)

=> D thuộc đường tròn đường kính KI (1)

Tam giác AFH vuông tại F có FK là trung tuyến nên KF = KH

Do đó ΔKFH cân tại K => ∠KFH = ∠KHF

Mà ∠KHF = ∠CHD (đối đỉnh) => ∠KFH = ∠CHD

Tương tự ΔICF cân tại C (do IF = IC) => ∠IFC = ∠ICF

Từ đó: ∠KFI = ∠KFH + ∠IFC = ∠CHD + ∠ICF = 90o (ΔDHC vuông tại D)

=> F thuộc đường tròn đường kính KI (2)

Chứng minh tương tự ∠KEI = 90o nên E thuộc đường tròn đường kính KI (3)

Từ (1), (2), (3): 5 điểm K, F, D, I, E thuộc đường tròn đường kính KI

d) Xét ΔMFB và ΔMCE có:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

=> ΔMFB ∼ ΔMCE

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án => MF.ME = MB.MC

Chứng minh tương tự: ME. MF = MD. MI

Từ đó: MB.MC = MD. MI

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Bài 5:

Từ giả thiết 0 < x < 1; 0 < y < 1, ta có:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Thay Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án = 1 => 2x + 2y - 1 = 3xy vào biểu thức P

P = x + y + Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

= x + y + Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án = x + y + |x + y - 1|

= x + y + 1 - (x + y) (do x + y < 1)

= 1.

Xem thử Đề ôn vào 10 Xem thử Đề vào 10 Hà Nội Xem thử Đề vào 10 TP.HCM Xem thử Đề vào 10 Đà Nẵng

Xem thêm các đề thi vào lớp 10 môn Toán có đáp án hay khác:

Lời giải bài tập lớp 10 sách mới:


de-thi-mon-toan-vao-10-trac-nghiem-tu-luan.jsp


Đề thi, giáo án lớp 9 sách mới các môn học