Đề thi Toán vào lớp 10 Hà Nội năm 2024 có đáp án (Đề 4)



Đề thi Toán vào lớp 10 Hà Nội năm 2024 có đáp án (Đề 4)

Xem thử Đề ôn vào 10 Xem thử Đề vào 10 Hà Nội

Chỉ từ 150k mua trọn bộ Đề ôn thi vào 10 môn Toán năm 2024 bản word có lời giải chi tiết:

Sở Giáo dục và Đào tạo TP Hà Nội

Kì thi tuyển sinh vào lớp 10

Môn thi: Toán (hệ Công lập)

Thời gian làm bài: 120 phút

Bài 1: (2 điểm) Cho biểu thức:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Với x ≥ 0, x ≠ 4, Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

a. Tính giá trị của A khi x = 9

b. Chứng minh Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

c. Tìm giá trị lớn nhất của biểu thức P = A.B

Bài 2: (2 điểm) Giải bài toán bằng cách lập phương trình hoặc hệ phương trình:

Một mảnh đất hình chữ nhật có chu vi bằng 46m. Nếu tăng chiều rộng thêm 4m và giảm chiều dài đi 20% chiều dài ban đầu thì mảnh đất đó trở thành hình vuông. Tính diện tích của mảnh vườn hình chữ nhật đó.

Bài 3: (2 điểm)

a) Giải hệ phương trình

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

b) Cho hệ phương trình:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Tìm m để hệ phương trình có nghiệm duy nhất (x; y) thỏa mãn x2 + y2 < 5.

Bài 4: (3,5 điểm) Cho điểm C nằm ngoài đường tròn (O), kẻ hai tiếp tuyến CA, CB với đường tròn (O) (A, B là tiếp điểm).

a) Chứng minh 4 điểm C, A, O, B cùng thuộc một đường tròn

b) Vẽ dây AD // CO. CD cắt (O) tại E. Gọi giao điểm AE với CO là F. Chứng minh ECF = CAF và CF2 = FE.FA

c) AB cắt CO tại H. Chứng minh ∠HEB = ∠CEF

d) Khi OC = 2R. Tính FO theo R.

Bài 5: (0,5 điểm) Giải phương trình sau:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Đáp án và Hướng dẫn giải

Bài 1:

a) Khi x =9 ta có:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Biểu thức P đạt GTLN khi và chỉ khi:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án đạt GTLN ⇔ √x + 3 đạt GTNN

⇔ √x = 0 ⇔ x = 0

Khi đó GTLN của P là:

Vậy GTLN của P là Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án đạt được khi x = 0

Bài 2:

Gọi chiều dài của hình chữ nhật là x (m) (0 < x < 23)

Gọi chiều rộng của hình chữ nhật là y (m) (0 < y < x < 23)

Chu vi hình chữ nhật là 46 m nên ta có phương trình

2(x + y) = 46 ⇔ x + y = 23

Nếu tăng chiều rộng 4m và giảm chiều dài đi 20% thì mảnh đất đó trở thành hình vuông nên ta có phương trình

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Ta có hệ phương trình:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Vậy chiều dài của hình chữ nhật là 15m

Chiều rộng của hình chữ nhật là 8m

Bài 3:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Đặt Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án (a ≠ 0), hệ phương trình trở thành:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Với a = 1, ta có:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án ⇔ √y - 2 = 1 ⇔ √y = 3 ⇔ y = 9

Vậy hệ phương trình có nghiệm (x; y) = (1; 9)

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Hệ phương trình có nghiệm duy nhất khi và chỉ khi m + 1 ≠ 0 ⇔ m ≠ -1

Khi đó:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Theo bài ra:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

⇔ 9m2 - 6m + 5 < 5m2 + 10m + 5

⇔ 4m2 - 16m < 0

⇔ 4m(m - 4) < 0

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Đối chiếu điều kiện, m ≠ -1 thỏa mãn

Vậy với 0 < m < 4 thì thỏa mãn yêu cầu đề bài.

Bài 4:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

a) Xét tứ giác CAOB có:

∠CAO = 90o (AC là tiếp tuyến của (O))

∠CBO = 90o (BC là tiếp tuyến của (O))

=> ∠CAO + ∠CBO = 180o

=> Tứ giác BCAO là tứ giác nội tiếp

b) Xét đường tròn (O) có:

∠CAF = ∠ADE (góc tạo bởi tiếp tuyến và dây cung và góc nội tiếp cùng chắn 1 cung)

Lại có: ∠ECF = ∠ADE (CO // AD; hai góc so le trong)

=> ∠CAF = ∠ECF

Xét ΔCFA và ΔEFC có:

∠CAF = ∠ECF

∠CFA là góc chung

=> ΔCFA ∼ ΔEFC

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án => CF2 = FE.FA

c) Ta có:

∠CAF = ∠EBA (góc tạo bởi tiếp tuyến và dây cung và góc nội tiếp cùng chắn 1 cung)

Lại có: ∠CAF = ∠ECF (cmt)

=> ∠EBA = ∠ECF

Xét tứ giác CEBH có:

∠EBA = ∠ECF

=> 2 đỉnh B và C cùng nhìn EH dưới 2 góc bằng nhau

=> Tứ giác CEBH là tứ giác nội tiếp

=> ∠BEH = ∠HCB ( 2 góc nội tiếp cùng chắn cung HB)

Mà ∠HCB = ∠HCA (CO là tia phân giác của góc ACB)

=> ∠BEH = ∠HCA (1)

Mặt khác: ΔCFA ∼ ΔEFC => ∠HCA = ∠CEF (2 góc tương ứng) (2)

Từ (1) và (2) : ∠BEH = ∠CEF

d) Xét tam giác ACO vuông tại A có:

AC2 + AO2 = CO2 => AC2 = 4R2 - R2 = 3R2

=> CB2 = CA2 = 3R2

Ta có: AB ⊥ CO (Tính chất 2 tiếp tuyến cắt nhau)

CO // AD (gt)

=> AB ⊥ AD => BD là đường kính của đường tròn (O)

Xét tam giác BCD vuông tại B có:

BC2 + BD2 = CD2 => CD2 = 3R2 + 4R2 = 7R2

=> CD = R√7

Xét ΔCEA và ΔCDA có:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Xét tam giác CAO vuông tại A có:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

=> ∠BOA = 2∠AOC = 120o => ∠AOD = 60o (kề bù với góc (BOA )

Tam giác AOD cân tại O có ∠AOD = 60o nên tam giác AOD đều

=> AD = AO = R

Ta có: OC // AD

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Bài 5:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Đặt Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án (a,b ≥ 0),phương trình trở thành:

2a2 + 3b2 = 5ab

⇔ 2a2 -2ab + 3b2 - 3ab = 0

⇔ (a - b)(2a - 3b) = 0

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Với a = b, ta có:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

⇔ x2 - 6x = x + 3

⇔ x2 - 7x - 3 = 0

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Với 2a = 3b, ta có:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

⇔ 4x2 - 24x = 9x + 27

⇔ 4x2 - 33x - 27 = 0

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Đối chiếu với ĐKXĐ thì phương trình có tập nghiệm là

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Xem thử Đề ôn vào 10 Xem thử Đề vào 10 Hà Nội

Xem thêm các đề thi vào lớp 10 môn Toán có đáp án hay khác:

Lời giải bài tập lớp 10 sách mới:


de-thi-mon-toan-vao-10-cua-thanh-pho-ha-noi.jsp


Đề thi, giáo án lớp 9 sách mới các môn học