Một vật thể có quỹ đạo là một nhánh của hypebol (H), nhận tâm Mặt Trời làm tiêu điểm (Hình 6)

Vận dụng 4 trang 53 Chuyên đề Toán 10: Một vật thể có quỹ đạo là một nhánh của hypebol (H), nhận tâm Mặt Trời làm tiêu điểm (Hình 6). Cho biết tâm sai của (H) bằng 1,2 và khoảng cách gần nhất giữa vật thể và tâm Mặt Trời là 2 . 108 km

a) Lập phương trình chính tắc của (H).

b) Lập công thức tính bán kính qua tiêu của vị trí M(x; y) của vật thể trong mặt phẳng toạ độ.

Một vật thể có quỹ đạo là một nhánh của hypebol (H), nhận tâm Mặt Trời làm tiêu điểm (Hình 6)

Lời giải:

a) Chọn hệ trục toạ độ sao cho tiêu điểm F2 của (H) trùng với tâm Mặt Trời, trục Ox đi qua đỉnh và tiêu điểm này của (H), đơn vị trên các trục là km.

Gọi phương trình chính tắc của (H) là x2a2-y2b2=1 (a > 0, b > 0).

Gọi toạ độ của vật thể là M(x; y).

Áp dụng công thức bán kính qua tiêu, ta có: khoảng cách giữa vật thể và tâm Mặt Trời là MF2 = |a-cax|=|a-ex| = ex – a ≥ ea – a (vì vật thể nằm ở nhánh bên phải trục Ox nên x ≥ a).

Như vậy khoảng cách gần nhất giữa vật thể và tâm Mặt Trời là ea – a

 ea – a = 2 . 108  1,2a – a = 2 . 108  a = 109 c = ea = 1,2 . 109

b2=c2-a2=(1,2.109)2-(109)2=0,44.1018.

Vậy phương trình chính tắc của (H) là x21018-y20,44.1018=1.

b) Bán kính qua tiêu của vị trí M(x; y) của vật thể trong mặt phẳng toạ độ là:

MF2 = |a-cax|=|a-ex| = |109 – 1,2x| (km).

Xem thêm lời giải bài tập Chuyên đề học tập Toán 10 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 sách mới các môn học