Cho elip (E) có phương trình chính tắc x^2/a^2 + y^2/b^2 = 1

Khám phá 1 trang 42 Chuyên đề Toán 10: Cho elip (E) có phương trình chính tắc x2a2+y2b2=1 (0<b<a) và cho điểm M(x0; y0) nằm trên (E).

Cho elip (E) có phương trình chính tắc x^2/a^2 + y^2/b^2 = 1

Các điểm M1(–x0; y0), M2(x0; –y0), M3(–x0; –y0) có thuộc (E) hay không?

Lời giải:

Nếu điểm M(x0; y0) thuộc (E) thì ta có: x02a2+y02b2=1.

Ta có: x02a2+(-y0)2b2=(-x0)2a2+y02b2=(-x0)2a2+(-y0)2b2=x02a2+y02b2=1 nên các điểm có toạ độ M1(x0; –y0), M2(–x0; y0), M3(–x0; –y0) cũng thuộc (E).

Xem thêm lời giải bài tập Chuyên đề học tập Toán 10 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 sách mới các môn học