Chứng minh rằng n^3 - n + 3 chia hết cho 3 với mọi số tự nhiên n lớn hơn bằng 1

Bài 2.3 trang 30 Chuyên đề Toán 10: Chứng minh rằng n3 – n + 3 chia hết cho 3 với mọi số tự nhiên n ≥ 1.

Lời giải:

Ta chứng minh bằng quy nạp theo n.

Bước 1. Với n = 1 ta có 13 – 1 + 3 = 3 ⁝ 3.

Như vậy khẳng định đúng cho trường hợp n = 1.

Bước 2. Giả sử khẳng định đúng với n = k, tức là ta có: k3 – k + 3 ⁝ 3  

Ta sẽ chứng minh rằng khẳng định cũng đủng với n = k + 1, nghĩa là ta sẽ chứng minh: (k + 1)3 – (k + 1) + 3 ⁝ 3

Thật vậy, sử dụng giả thiết quy nạp ta có:

(k + 1)3 – (k + 1) + 3

= (k3 + 3k2 + 3k + 1) – (k + 1) + 3

= (k3 – k + 3) + (3k2 + 3k)

Vì (k3 – k + 3) và (3k2 + 3k) đều chia hết cho 3 nên (k3 – k + 3) + (3k2 + 3k) ⁝ 3 hay (k + 1)3 – (k + 1) + 3 ⁝ 3.

Vậy khẳng định đúng với mọi số tự nhiên n ≥ 1.

Xem thêm lời giải bài tập Chuyên đề học tập Toán 10 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 sách mới các môn học