Cho tam giác ABC vuông cân tại A. Gọi M là trung điểm của cạnh huyền BC

Câu 3 trang 94 vở bài tập Toán lớp 7 Tập 2:Cho tam giác ABC vuông cân tại A. Gọi M là trung điểm của cạnh huyền BC. Chứng minh tam giác MAB vuông cân

Lời giải:

Cho tam giác ABC vuông cân tại A. Gọi M là trung điểm của cạnh huyền BC

Vì tam giác ABC vuông cân tại A nên B^ = 45°.

Xét hai tam giác AMB và AMC, ta có:

AB = AC (vì tam giác ABC cân tại A);

MB = MC (vì M là trung điểm của BC)

AM là cạnh chung.

Suy ra ∆AMB = ∆AMC (c.c.c). Do đó AMB^ = AMC^.

AMB^ + AMC^ = 180o (hai góc kề bù) nên AMB^ = AMC^ = 90o

Từ đó ∆AMB vuông tại M có B^ = 45o, nên BAM^ = 45°.

Suy ra BAM^ = B^

Vậy tam giác MAB là tam giác vuông cân.

Xem thêm các bài giải Vở bài tập Toán lớp 7 Cánh diều hay, chi tiết khác:


Giải bài tập lớp 7 Cánh diều khác