Cách giải phương trình bằng cách nhẩm nghiệm lớp 9 (cực hay)
Bài viết Cách giải phương trình bằng cách nhẩm nghiệm lớp 9 với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách giải phương trình bằng cách nhẩm nghiệm.
- Để nhẩm nghiệm của phương trình ax2 + bx + c = 0 (a ≠ 0) ta làm như sau:
+ B1: Tính ∆ = b2 – 4ac. Nếu ∆ < 0 thì không tồn tại nghiệm của phương trình. Nếu ∆ ≥ 0 thì phương trình có 2 nghiệm x1, x2
+ B2: Trong trường hợp ∆ ≥ 0 sử dụng Vi-et ta nhẩm nghiệm như sau:
- Nếu hệ số a = 1 thì phương trình có dạng x2 + bx + c = 0(*) ta phân tích hệ số c thành tích của 2 số trước rồi kết hợp với b để tìm ra 2 số thỏa mãn tổng bằng –b và tích bằng c. Hai số tìm được là nghiệm của phương trình x2 + bx + c = 0. Tóm lại trong trường hợp này ta có kết quả sau
x2 + (u + v)x + uv = 0 ⇒ x1 = -u, x2 = -v
x2 - (u + v)x + uv = 0 ⇒ x1 = u, x2 = v
- Nếu hệ số a ≠ 1 ta chia cả hai vế của phương trình cho a để đưa phương trình về dạng (*) rồi nhẩm nghiệm
- Nếu a + b + c = 0 thì phương trình có 2 nghiệm:
- Nếu a – b + c = 0 thì phương trình có 2 nghiệm:
Ví dụ 1: Tính nhẩm nghiệm của các phương trình sau
a. x2 – 11x + 30 = 0
b. x2 – 12x + 27 = 0
c. x2 + 16x + 39 = 0
Giải
a. Phương trình đã cho có ∆ = 112 – 4.30 = 121 – 120 = 1 > 0 nên có 2 nghiệm phân biệt x1, x2
Theo Vi-et ta có:
Ta thấy 30 = 15.2 = (-15).(-2) = 10.3 = (-10).(-3) = 6.5 = (-6).(-5) nhưng ta cần chọn hai số có tổng bằng 11 nên hai số thỏa mãn (*) là 6 và 5
Suy ra các nghiệm của phương trình là: x1 = 5, x2 = 6
b. Phương trình đã cho có ∆ = 122 – 4.27 = 144 – 108 = 36 > 0 nên có 2 nghiệm phân biệt x1, x2
Theo Vi-et ta có
Ta thấy 27 = 9.3 = (-9).(-3) = 1.27 = (-1).(-27) nhưng ta cần chọn hai số có tổng bằng 12 nên hai số thỏa mãn (*) là 9 và 3
Suy ra các nghiệm của phương trình là: x1 = 3, x2 = 9
c. Phương trình đã cho có ∆ = 162 – 4.39 = 256 – 156 = 100 > 0 nên có 2 nghiệm phân biệt x1, x2
Theo Vi-et ta có
Ta thấy 39 = 13.3 = (-13).(-3) = 1.39 = (-1).(-39) nhưng ta cần chọn hai số có tổng bằng -16 nên hai số thỏa mãn (*) là -13 và -3
Suy ra các nghiệm của phương trình là: x1 = -13, x2 = -3
Ví dụ 2: Tính nhẩm nghiệm của phương trình sau
a. 2x2 + 3x + 1 = 0
b. 3x2 – 2x - 1 = 0
Giải
a. Phương trình đã cho có: a - b + c = 2 – 3 + 1 = 0
Suy ra các nghiệm của phương trình là:
b. Phương trình đã cho có: a + b + c = 3 + (-2) + (-1) = 0
Suy ra các nghiệm của phương trình là:
Câu 1: Số nghiệm của phương trình 7x2 - 9x + 2 = 0 là
A. 0
B. 1
C. 2
D. 3
Giải
Phương trình đã cho có: a + b + c = 7 + (-9) + 2 = 0
Suy ra các nghiệm của phương trình là:
Đáp án C
Câu 2: Số nào sau đây là nghiệm của phương trình 1975x2 + 4x - 1979 = 0
Giải
Phương trình đã cho có: a + b + c = 1975 + 4 + (-1979) = 0
Suy ra các nghiệm của phương trình là:
Đáp án A
Câu 3: Cho phương trình (m – 2)x2 – (2m + 5)x + m + 7 = 0 (m ≠ 2), khẳng định nào sau đây đúng
A. Phương trình có 2 nghiệm phân biệt
B. Phương trình có 2 nghiệm x = -1, x = m + 3 ∀ m ≠ 2
C. Phương trình có nghiệm kép ∀ m ≠ 2
D. Phương trình vô nghiệm ∀ m ≠ 2
Giải
Với m ≠ 2 thì phương trình đã cho là phương trình bậc 2 có các hệ số:
a = m – 2, b = -(2m + 5), c = m + 7
Suy ra a + b + c = m – 2 – (2m + 5) + m + 7 = 0
Vậy phương trình luôn có 2 nghiệm:
Đáp án A
Câu 4: Một nghiệm của phương trình mx2 + (3m – 1)x + 2m - 1 = 0 (m ≠ 0) là
Giải
Với m ≠ 0 thì phương trình đã cho là phương trình bậc 2 có các hệ số:
a = m, b = 3m - 1, c = 2m - 1
Suy ra a - b + c = m – 3m + 1 + 2m - 1 = 0
Vậy phương trình luôn có 2 nghiệm:
Đáp án C
Câu 5: Cho phương trình: (2m – 1)x2 + (m - 3)x - 6m - 2 = 0 ()
Biết rằng phương trình đã cho luôn có một nghiệm x = -2, tìm nghiệm còn lại của phương trình theo m
Giải
Vì phương trình đã cho có nghiệm x = -2 nên ∆ ≥ 0.
Nghĩa là phương trình luôn có 2 nghiệm x1, x2 . Không làm mất tính tổng quát, giả sử x1 = -2
Áp dụng Vi-et ta có:
Đáp án B
Câu 6: Tìm m để phương trình x2 + 3mx - 108 = 0 có một nghiệm bằng 6. Với giá trị m vừa tìm được tính nghiệm còn lại
A. m = 4 và x = -18
B. m = 3 và x = -16
C. m = 2 và x = -15
D. m = 1 và x = -19
Giải
Vì x = 6 là nghiệm của phương trình nên:
Với m = 4 phương trình trở thành: x2 + 12x - 108 = 0. Theo Vi-et ta có:
Đáp án A
Câu 7: Tìm nghiệm của phương trình x2 - (m + 4)x + 3m + 3 = 0
A. Phương trình có nghiệm kép x = 2 ∀ m
B. Phương trình có hai nghiệm x = 3, x = m + 1 ∀ m
C. Phương trình có hai nghiệm x = 2, x = m + 2 ∀ m
D. Phương trình vô nghiệm
Giải
⇒ phương trình luôn có nghiệm với mọi m
Phương trình x2 - (m + 4)x + 3m + 3 = 0 ⇔ x2 - [(m + 1) + 3]x + 3(m + 1) = 0
⇒ phương trình có 2 nghiệm: x = 3, x = m + 1
Đáp án B
Câu 8: Biết rằng phương trình x2 - (2m + 1)x + m2 + m = 0 luôn có 2 nghiệm phân biệt. Tính tổng bình phương các nghiệm của phương trình theo m
A. 2m2 - 2m - 1
B. 2m2 + 2m - 1
C. 2m2 + 2m + 1
D. 2m2 - 2m + 1
Giải
Phương trình x2 - (2m + 1)x + m2 + m = 0 ⇔ x2 - [m + (m + 1)]x + m(m + 1) = 0
⇒ phương trình có 2 nghiệm x = m, x = m + 1
Vậy tổng bình phương các nghiệm của phương trình là:
m2 + (m + 1)2 = m2 + m2 + 2m + 1 = 2m2 + 2m + 1
Đáp án là C
Bài 1. Nhẩm nghiệm của các phương trình sau:
a) x2 – 5x + 4.
b) 2x2 + 3x – 5 = 0.
c)
d)
Bài 2. Nhẩm nghiệm của các phương trình sau:
a) x2 – 2025x – 2026 = 0.
b) –x4 – 4x2 – 3 = 0.
c)
d)
Bài 3. Nhẩm nghiệm của các phương trình sau:
a) x2 – 2x – 15 = 0.
b) x2 + 11x + 30 = 0.
c)
d) 3x2 – 8x + 4 = 0.
Bài 4. Nhẩm nghiệm của các phương trình sau:
a) 2x2 – 5x + 2 = 0.
b) –3x2 + 10x – 3 = 0.
Bài 5.
a) Phương trình x2 – 7x + a = 0 có một nghiệm bằng 11. Tìm a và nghiệm còn lại của phương trình.
b) Phương trình x2 – bx + 50 = 0 có hai nghiệm trong đó một nghiệm gấp đôi nghiệm kia. Tìm b và hai nghiệm của phương trình.
c) Phương trình 2x2 – (m + 4)x + m = 0 có một nghiệm bằng –3. Tìm m và nghiệm còn lại.
d) Phương trình mx2 – 2(m – 2)x + m – 3 = 0 có một nghiệm bằng –5. Tìm m và nghiệm còn lại.
Xem thêm các dạng bài tập Toán lớp 9 chọn lọc, có đáp án hay khác:
- Không giải phương trình, tính tổng và tích các nghiệm của phương trình bậc hai
- Cách tìm hai số khi biết tổng và tích của chúng cực hay
- Cách phân tích đa thức ax2 + bx + c thành nhân tử để giải phương trình bậc hai
- Cách lập phương trình bậc hai khi biết hai nghiệm của phương trình đó
- Giải Tiếng Anh 9 Global Success
- Giải sgk Tiếng Anh 9 Smart World
- Giải sgk Tiếng Anh 9 Friends plus
- Lớp 9 Kết nối tri thức
- Soạn văn 9 (hay nhất) - KNTT
- Soạn văn 9 (ngắn nhất) - KNTT
- Giải sgk Toán 9 - KNTT
- Giải sgk Khoa học tự nhiên 9 - KNTT
- Giải sgk Lịch Sử 9 - KNTT
- Giải sgk Địa Lí 9 - KNTT
- Giải sgk Giáo dục công dân 9 - KNTT
- Giải sgk Tin học 9 - KNTT
- Giải sgk Công nghệ 9 - KNTT
- Giải sgk Hoạt động trải nghiệm 9 - KNTT
- Giải sgk Âm nhạc 9 - KNTT
- Giải sgk Mĩ thuật 9 - KNTT
- Lớp 9 Chân trời sáng tạo
- Soạn văn 9 (hay nhất) - CTST
- Soạn văn 9 (ngắn nhất) - CTST
- Giải sgk Toán 9 - CTST
- Giải sgk Khoa học tự nhiên 9 - CTST
- Giải sgk Lịch Sử 9 - CTST
- Giải sgk Địa Lí 9 - CTST
- Giải sgk Giáo dục công dân 9 - CTST
- Giải sgk Tin học 9 - CTST
- Giải sgk Công nghệ 9 - CTST
- Giải sgk Hoạt động trải nghiệm 9 - CTST
- Giải sgk Âm nhạc 9 - CTST
- Giải sgk Mĩ thuật 9 - CTST
- Lớp 9 Cánh diều
- Soạn văn 9 Cánh diều (hay nhất)
- Soạn văn 9 Cánh diều (ngắn nhất)
- Giải sgk Toán 9 - Cánh diều
- Giải sgk Khoa học tự nhiên 9 - Cánh diều
- Giải sgk Lịch Sử 9 - Cánh diều
- Giải sgk Địa Lí 9 - Cánh diều
- Giải sgk Giáo dục công dân 9 - Cánh diều
- Giải sgk Tin học 9 - Cánh diều
- Giải sgk Công nghệ 9 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 9 - Cánh diều
- Giải sgk Âm nhạc 9 - Cánh diều
- Giải sgk Mĩ thuật 9 - Cánh diều