Lý thuyết Đường tròn ngoại tiếp. Đường tròn nội tiếp lớp 9 (hay, chi tiết)

Bài viết Lý thuyết Đường tròn ngoại tiếp. Đường tròn nội tiếp lớp 9 hay, chi tiết giúp bạn nắm vững kiến thức trọng tâm Đường tròn ngoại tiếp. Đường tròn nội tiếp.

Bài giảng: Bài 8: Đường tròn ngoại tiếp. Đường tròn nội tiếp - Cô Nguyễn Thu Hà (Giáo viên VietJack)

1. Định nghĩa

    + Đường tròn đi qua tất cả các đỉnh của một đa giác được gọi là đường tròn ngoại tiếp đa giác và đa giác được gọi là đa giác nội tiếp đường tròn.

    + Đường tròn tiếp xúc với tất cả các cạnh của một đa giác được gọi là đường tròn nội tiếp đa giác và đa giác được gọi là đa giác ngoại tiếp đường tròn.

Lý thuyết Đường tròn ngoại tiếp. Đường tròn nội tiếp - Lý thuyết Toán lớp 9 đầy đủ nhất

2. Định lý

    + Bất kì đa giác đều nào cũng có một và chỉ một đường tròn ngoại tiếp, có một và chỉ một đường tròn nội tiếp.

    + Tâm của hai đường tròn này trùng nhau và được gọi là tâm của đa giác đều.

    + Tâm này là giao điểm hai đường trung trực của hai cạnh hoặc là hai đường phân giác của hai góc.

3. Mở rộng

    + Bán kính đường tròn ngoại tiếp đa giác là khoảng cách từ tâm đến đỉnh.

    + Bán kính đường tròn nội tiếp đa giác là khoảng cách từ tâm O đến 1 cạnh.

    + Cho n_ giác đều cạnh a. Khi đó:

– Chu vi của đa giác: 2p = na (p là nửa chu vi).

– Mỗi góc ở đỉnh của đa giác có số đo bằng

Lý thuyết Đường tròn ngoại tiếp. Đường tròn nội tiếp - Lý thuyết Toán lớp 9 đầy đủ nhất

– Mỗi góc ở tâm của đa giác có số đo bằng 360°/n.

– Bán kính đường tròn ngoại tiếp:

Lý thuyết Đường tròn ngoại tiếp. Đường tròn nội tiếp - Lý thuyết Toán lớp 9 đầy đủ nhất

– Bán kính đường tròn nội tiếp:

Lý thuyết Đường tròn ngoại tiếp. Đường tròn nội tiếp - Lý thuyết Toán lớp 9 đầy đủ nhất

– Liên hệ giữa bán kính đường tròn ngoại tiếp và nội tiếp:

Lý thuyết Đường tròn ngoại tiếp. Đường tròn nội tiếp - Lý thuyết Toán lớp 9 đầy đủ nhất

– Diện tích đa giác đều:Lý thuyết Đường tròn ngoại tiếp. Đường tròn nội tiếp - Lý thuyết Toán lớp 9 đầy đủ nhất

4. Ví dụ cụ thể

Câu 1: Một đường tròn có bán kính R = 3cm. Tính diện tích hình vuông nội tiếp đường tròn đó.

Lời giải:

Ta có: Bán kính đường tròn ngoại tiếp:

Lý thuyết Đường tròn ngoại tiếp. Đường tròn nội tiếp - Lý thuyết Toán lớp 9 đầy đủ nhất

Do tứ giác nội tiếp là hình vuông với n = 4, khi đó: a = R√2 = 3√2.

Diện tích hình vuông là: S = a2 = (3√2)2 = 18 cm2.

Câu 1: Chứng minh rằng: Trong hình vuông, bán kính đường tròn ngoại tiếp luôn lớn hơn bán kính đường tròn nội tiếp của hình vuông đó.

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Lời giải:

Xét hình vuông ABCD có tâm O, kẻ OM ⊥ CD (M ∈ CD)

Lúc đó OD là bán kính đường tròn ngoại tiếp, OM là bán kính đường tròn nội tiếp hình vuông ABCD

Δ OMD vuông tại M nên OD ≥ OM (1)

Giả sử OD = OM khi đó đường tròn nội tiếp và đường tròn ngoại tiếp là hai đường tròn có chung tâm O và độ dài hai bán kính bằng nhau nên chúng trùng nhau.

Lúc đó không tồn tại hình vuông vừa có đỉnh trên đường tròn (O) vừa có cạnh tiếp xúc với đường tròn (O)

Do đó OD ≠ OM kết hợp với (1) ta có OD > OM (đpcm)

Câu 2: Cho lục giác đều ABCDEF có tâm O. Đặt R, r lần lượt là bán kính đường tròn ngoại tiếp và nội tiếp lục giác. Viết biểu thức liên hệ giữa R và r.

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Lời giải:

Lục giác đều ABCDEF nên chia đường tròn ngoại tiếp thành 6 cung bằng nhau, suy ra

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Xem thêm lý thuyết và các dạng bài tập Toán lớp 9 có lời giải hay khác:


Giải bài tập lớp 9 sách mới các môn học