Lý thuyết Hình cầu. Diện tích mặt cầu và thể tích hình cầu lớp 9 (hay, chi tiết)
Bài viết Lý thuyết Hình cầu. Diện tích mặt cầu và thể tích hình cầu lớp 9 hay, chi tiết giúp bạn nắm vững kiến thức trọng tâm Hình cầu. Diện tích mặt cầu và thể tích hình cầu.
1. Hình cầu.
Khi quay nửa hình tròn tâm O, bán kính R một vòng quanh đường kính AB cố định thì được một hình cầu.
+ Nửa đường tròn trong phép quay nói trên tạo thành một mặt cầu.
+ Điểm O được gọi tâm, R là bán kính của hình cầu hay mặt cầu đó.
2. Cắt hình cầu bởi một mặt phẳng
Khi cắt hình cầu bởi một mặt phẳng ta được một hình tròn.
Khi cắt mặt cầu bán kính R bởi một mặt phẳng ta được một đường tròn:
+ Đường tròn đó có bán kính R nếu mặt phẳng đi qua tâm (gọi là đường tròn lớn).
+ Đường tròn đó có bán kính bé hơn R nếu mặt phẳng không đi qua tâm.
3. Diện tích – thể tích của hình cầu
Cho hình cầu bán kính R.
+ Diện tích mặt cầu: S = 4πR2
+ Thể tích hình cầu:
4. Ví dụ cụ thể
Câu 1: Một hình cầu có số đo diện tích mặt cầu (tính bằng ) đúng bằng số đo thể tích của nó (tính bằng ). Tính bán kính của hình cầu đó.
Lời giải:
Câu 2: Tính bán kính của một mặt cầu, biết rằng mặt cầu đó có số đo đại số diện tích bằng số đo thể tích
Giải:
Theo bài ra ta có: 4/3.π.R3 = 4πR3 ⇔ R/3 = 1 ⇔ R = 3 (đơn vị độ đài)
Vậy bán kính mặt cầu là 3
Câu 1: Khi bán kính của một mặt cầu tăng lên 3/2 lần thì diện tích và thể tích thay đổi như thế nào?
Lời giải:
Theo công thức diện tích ta có: S = 4πR2
Dựa vào công thức trên, khi tăng R lên 3/2 lần thì diện tích tăng lên R2 tức là 9/4 lần
Tương tự đối với thể tích: V = 4/3 πR3
Dựa vào công thức trên, khi tăng R lên 3/2 lần thì thể tích tăng lên R3 tức là 27/8 lần.
Câu 2: Giả sử trái cam có hình tương tự như mặt cầu, bạn Lan cắt trái cam làm đôi và tiến hành đo đường kính của nửa trái cam vừa cắt, bạn đo được bán kính tính cả vỏ cam là 2,5cm, biết vỏ cam dày 3mm. Hãy tính thể tích thực của quả cam đó.
Lời giải:
Xem như phần cam đã mà Lan đã ăn cũng là một dạng mặt cầu, vậy bán kính của mặt cầu ấy chính là bán kính của quả cam đó trừ đi vỏ.
Xem thêm lý thuyết và các dạng bài tập Toán lớp 9 có lời giải hay khác:
- Lý thuyết Bài 1: Hình Trụ - Diện tích xung quanh và thể tích của hình trụ (hay, chi tiết)
- Trắc nghiệm Bài 1 (có đáp án): Hình Trụ - Diện tích xung quanh và thể tích của hình trụ
- Lý thuyết Bài 2: Hình nón - Hình nón cụt - Diện tích xung quanh và thể tích của hình nón, hình nón cụt (hay, chi tiết)
- Trắc nghiệm Bài 2 (có đáp án): Hình nón - Hình nón cụt - Diện tích xung quanh và thể tích của hình nón, hình nón cụt
- Tổng hợp lý thuyết Chương 4 Hình học 9 (hay, chi tiết)
- Tổng hợp Trắc nghiệm Chương 4 Hình học 9 (có đáp án)
- Giải Tiếng Anh 9 Global Success
- Giải sgk Tiếng Anh 9 Smart World
- Giải sgk Tiếng Anh 9 Friends plus
- Lớp 9 Kết nối tri thức
- Soạn văn 9 (hay nhất) - KNTT
- Soạn văn 9 (ngắn nhất) - KNTT
- Giải sgk Toán 9 - KNTT
- Giải sgk Khoa học tự nhiên 9 - KNTT
- Giải sgk Lịch Sử 9 - KNTT
- Giải sgk Địa Lí 9 - KNTT
- Giải sgk Giáo dục công dân 9 - KNTT
- Giải sgk Tin học 9 - KNTT
- Giải sgk Công nghệ 9 - KNTT
- Giải sgk Hoạt động trải nghiệm 9 - KNTT
- Giải sgk Âm nhạc 9 - KNTT
- Giải sgk Mĩ thuật 9 - KNTT
- Lớp 9 Chân trời sáng tạo
- Soạn văn 9 (hay nhất) - CTST
- Soạn văn 9 (ngắn nhất) - CTST
- Giải sgk Toán 9 - CTST
- Giải sgk Khoa học tự nhiên 9 - CTST
- Giải sgk Lịch Sử 9 - CTST
- Giải sgk Địa Lí 9 - CTST
- Giải sgk Giáo dục công dân 9 - CTST
- Giải sgk Tin học 9 - CTST
- Giải sgk Công nghệ 9 - CTST
- Giải sgk Hoạt động trải nghiệm 9 - CTST
- Giải sgk Âm nhạc 9 - CTST
- Giải sgk Mĩ thuật 9 - CTST
- Lớp 9 Cánh diều
- Soạn văn 9 Cánh diều (hay nhất)
- Soạn văn 9 Cánh diều (ngắn nhất)
- Giải sgk Toán 9 - Cánh diều
- Giải sgk Khoa học tự nhiên 9 - Cánh diều
- Giải sgk Lịch Sử 9 - Cánh diều
- Giải sgk Địa Lí 9 - Cánh diều
- Giải sgk Giáo dục công dân 9 - Cánh diều
- Giải sgk Tin học 9 - Cánh diều
- Giải sgk Công nghệ 9 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 9 - Cánh diều
- Giải sgk Âm nhạc 9 - Cánh diều
- Giải sgk Mĩ thuật 9 - Cánh diều