Ứng dụng tích phân trong hình học - Tính diện tích hình phẳng
Bài viết Ứng dụng tích phân trong hình học - Tính diện tích hình phẳng với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Ứng dụng tích phân trong hình học - Tính diện tích hình phẳng.
Bài giảng: Ứng dụng của tích phân tính diện tích, tính thể tích - Cô Nguyễn Phương Anh (Giáo viên VietJack)
1. Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x) liên tục trên đoạn [a;b], trục hoành và hai đường thẳng x = a; x = b được xác định:
2. Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f1(x); y = f2(x) liên tục trên đoạn [a;b] và hai đường thẳng x = a; x = b được xác định:
* Những điểm cần lưu ý:
1. Nếu trên đoạn [a;b], hàm số y = f(x) không đổi dấu thì:
2. Nắm vững cách tính tích phân của hàm số có chứa giá trị tuyệt đối.
3. Diện tích của hình phẳng giới hạn bởi các đường x = g(y); x = h(y) và hai đường thẳng y = c; y = d được xác định:
Trường hợp 1. Cho hai hàm số f(x) và g(x) liên tục trên đoạn [a;b]. Diện tích hình phẳng giới hạn bởi các đường y = f(x) ; y = g(x); x = a; x = b là:
Phương pháp giải toán:
+) Giải phương trình hoành độ giao điểm của hai đồ thị: f(x) = g(x) (1)
+) Nếu (1) vô nghiệm thì:
+) Nếu (1) có nghiệm α thuộc [a;b] thì:
Chú ý: Có thể lập bảng xét dấu hàm số f(x) – g(x) trên đoạn [a;b] rồi dựa vào bảng xét dấu để tính tích phân.
Trường hợp 2. Cho hai hàm số f(x) và g(x) liên tục trên đoạn [a;b]. Diện tích hình phẳng giới hạn bởi các đường y = f(x); y = g(x) là:
Trong đó α; β là nghiệm nhỏ nhất và lớn nhất của phương trình f(x) = g(x) (a ≤ α ≤ β ≤ b)
Phương pháp giải toán
Bước 1. Giải phương trình hoành độ giao điểm f(x) = g(x) tìm các giá trị α; β.
Bước 2. Tính như trường hợp 1.
Ví dụ 1. Cho đồ thị hàm số y = f(x). Diện tích hình phẳng (phần tô đậm trong hình) là:
Lời giải
Ví dụ 2. Diện tích hình phẳng được giới hạn bởi đồ thị hàm số y = x3, trục hoành và hai đường thẳng x = 1; x = 3 là:
A. 19. B. 18. C. 20. D. 21.
Lời giải
Ví dụ 3. Diện tích hình phẳng được giới hạn bởi đồ thị hàm số y = √x, trục hoành và hai đường thẳng x = 1; x = 4 là:
Lời giải
Ví dụ 4. Diện tích hình phẳng được giới hạn bởi đồ thị hàm số , trục hoành và hai đường thẳng x = 1; x = 8 là:
Lời giải
Ví dụ 5. Diện tích hình phẳng được giới hạn bởi đồ thị hàm số y = sinx, trục hoành và hai đường thẳng là:
A. 1. B. 1/2. C. 2. D. 3/2.
Lời giải
Ví dụ 6. Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = -x2 + 4, trục tung và trục hoành là:
Lời giải
Ví dụ 7. Diện tích hình phẳng giới hạn bởi các đường (C1): y = x3 + 11x - 6; (C2): y = 6x2; x = 0; x = 2 (Đơn vị diện tích)
Lời giải
Ví dụ 8. Diện tích hình phẳng giới hạn bởi y = x3; y = 4x là:
A. 8. B. 9. C. 12. D. 13.
Lời giải
Ví dụ 9. Diện tích hình phẳng được giới hạn bởi đồ thị hàm số y = x4 - 3x2 - 4, trục hoành và hai đường thẳng x = 0; x = 3 là:
Lời giải
Ví dụ 10. Diện tích hình phẳng được giới hạn bởi đồ thị hàm số y = cos2x, trục hoành và hai đường thẳng là:
A. 2. B. 1. C. 3. D. 4.
Lời giải
Ví dụ 11. Diện tích hình phẳng giới hạn bởi đường cong y = x3 - 4x, trục hoành và hai đường thẳng x = -3; x = 4 là:
Lời giải
Ví dụ 12. Diện tích hình phẳng giới hạn bởi đường cong (C) y = xlnx, trục hoành và đường thẳng x = e là:
Lời giải
Ví dụ 13. Hình phẳng (H) được giới hạn bởi đồ thị hai hàm số y = x2 + x - 2; y = x + 2 và hai đường thẳng x = -2; x = 3. Diện tích của (H) bằng:
Lời giải
Ví dụ 14. Gọi (H) là hình phẳng được giới hạn bởi đồ thị hai hàm số y = (1 + ex).x; y = (1 + e)x. Diện tích của (H) bằng:
Lời giải
Ví dụ 15. Hình phẳng (H) được giới hạn bởi đồ thị hai hàm số y = |x2 - 1|; y = |x| + 5. Diện tích của (H) bằng:
Lời giải
Ví dụ 16. Diện tích hình phẳng giới hạn bởi (P): y = x2 + 3, tiếp tuyến của (P) tại điểm có hoành độ x = 2 và trục tung bằng:
Lời giải
Ví dụ 17. Diện tích hình phẳng giới hạn bởi đồ thị hai hàm số y2 – 2y + x = 0 và x + y = 0 là:
Lời giải
Ví dụ 18. Diện tích hình phẳng giới hạn bởi các đồ thị hàm số bằng:
A. 27ln2. B. 27ln3. C. 28ln3. D. 29ln3.
Lời giải
Câu 1: Diện tích hình phẳng được giới hạn bởi đồ thị hàm số y = tanx, trục hoành và hai đường thẳng là:
Lời giải:
Câu 2: Diện tích hình phẳng được giới hạn bởi đồ thị hàm số y = e2x, trục hoành và hai đường thẳng x = 0, x = 1 là:
Lời giải:
Câu 3: Diện tích hình phẳng được giới hạn bởi đồ thị hàm số y = x3 - 3x2, trục hoành và hai đường thẳng x = 1; x = 4 là:
Lời giải:
Câu 4: Diện tích hình phẳng được giới hạn bởi đồ thị hàm số , trục hoành và đường thẳng x = 2 là:
A. 3 + 2ln2. B. 3 - ln2. C. 3 - 2ln2. D. 3 + ln2.
Lời giải:
Câu 5: Tính diện tích hình phẳng giới hạn bởi parabol y = 2 - x2 và đường thẳng y = -x là:
Lời giải:
Câu 6: Diện tích hình phẳng được giới hạn bởi hai đồ thị hàm số y = 2x3 - 3x2 + 1 và y = x3 - 4x2 + 2x + 1 là:
Lời giải:
Câu 7: Diện tích hình phẳng giới hạn bởi hai parabol là:
A. 7. B. 8. C. 9. D. 6.
Lời giải:
Câu 8: Diện tích giới hạn bởi 2 đường cong: (C1): y = x2 + 1; (C2): y = x2 - 2x và đường thẳng x = -1 và x = 2.
Lời giải:
Câu 9: Diện tích hình phẳng giới hạn bởi parabol: y = x2 - 2x + 2 tiếp tuyến với parabol tại điểm M(3;5) và trục tung:
A. 7. B. 6. C. 5. D. 9.
Lời giải:
Câu 10: Diện tích hình phẳng giới hạn bởi đường cong y = x(x – 1)(x – 2) và trục hoành:
Lời giải:
Câu 11: Diện tích hình phẳng trong hình vẽ sau là:
Lời giải:
Câu 12: Diện tích hình phẳng nằm trong góc phần tư thứ nhất, giới hạn bởi các đường thẳng y = 8x; y = x và đồ thị hàm số y = x3 là a/b. Khi đó a + b bằng:
A. 68. B. 67. C. 66. D. 65.
Lời giải:
Câu 13: Diện tích hình phẳng giới hạn bởi các đường thẳng y = 1; y = x và đồ thị hàm số trong miền x ≥ 0; y ≤ 1 là a/b. Khi đó b – a bằng:
A. 4. B. 2. C. 3. D. 1.
Lời giải:
Câu 14: Diện tích hình phẳng giới hạn bởi các đường thẳng
Khi đó a + 2b bằng:
A. 16. B. 15. C. 17. D. 18.
Lời giải:
Xem thêm các dạng bài tập Toán lớp 12 có trong đề thi THPT Quốc gia khác:
- Bài tập tính tích phân nâng cao
- Tính tích phân hàm lượng giác bằng phương pháp tích phân từng phần
- Tính tích phân hàm số mũ, logarit bằng phương pháp tích phân từng phần
- Tính tích phân của hàm số chẵn, hàm số lẻ
- Hàm số dưới dấu tích phân là thương của hàm chẵn và hàm mũ
- Tích phân của hàm trị tuyệt đối
- Bài tập tích phân nâng cao
- Ứng dụng tích phân: Tính thể tích vật thể và khối tròn xoay
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Lớp 12 Kết nối tri thức
- Soạn văn 12 (hay nhất) - KNTT
- Soạn văn 12 (ngắn nhất) - KNTT
- Giải sgk Toán 12 - KNTT
- Giải sgk Vật Lí 12 - KNTT
- Giải sgk Hóa học 12 - KNTT
- Giải sgk Sinh học 12 - KNTT
- Giải sgk Lịch Sử 12 - KNTT
- Giải sgk Địa Lí 12 - KNTT
- Giải sgk Giáo dục KTPL 12 - KNTT
- Giải sgk Tin học 12 - KNTT
- Giải sgk Công nghệ 12 - KNTT
- Giải sgk Hoạt động trải nghiệm 12 - KNTT
- Giải sgk Giáo dục quốc phòng 12 - KNTT
- Giải sgk Âm nhạc 12 - KNTT
- Giải sgk Mĩ thuật 12 - KNTT
- Lớp 12 Chân trời sáng tạo
- Soạn văn 12 (hay nhất) - CTST
- Soạn văn 12 (ngắn nhất) - CTST
- Giải sgk Toán 12 - CTST
- Giải sgk Vật Lí 12 - CTST
- Giải sgk Hóa học 12 - CTST
- Giải sgk Sinh học 12 - CTST
- Giải sgk Lịch Sử 12 - CTST
- Giải sgk Địa Lí 12 - CTST
- Giải sgk Giáo dục KTPL 12 - CTST
- Giải sgk Tin học 12 - CTST
- Giải sgk Hoạt động trải nghiệm 12 - CTST
- Giải sgk Âm nhạc 12 - CTST
- Lớp 12 Cánh diều
- Soạn văn 12 Cánh diều (hay nhất)
- Soạn văn 12 Cánh diều (ngắn nhất)
- Giải sgk Toán 12 Cánh diều
- Giải sgk Vật Lí 12 - Cánh diều
- Giải sgk Hóa học 12 - Cánh diều
- Giải sgk Sinh học 12 - Cánh diều
- Giải sgk Lịch Sử 12 - Cánh diều
- Giải sgk Địa Lí 12 - Cánh diều
- Giải sgk Giáo dục KTPL 12 - Cánh diều
- Giải sgk Tin học 12 - Cánh diều
- Giải sgk Công nghệ 12 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 12 - Cánh diều
- Giải sgk Giáo dục quốc phòng 12 - Cánh diều
- Giải sgk Âm nhạc 12 - Cánh diều