Cách tìm căn bậc hai của số phức (cực hay)



Bài viết Cách tìm căn bậc hai của số phức với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách tìm căn bậc hai của số phức.

Bài giảng: Các phép biến đổi cơ bản trên tập hợp số phức - Cô Nguyễn Phương Anh (Giáo viên VietJack)

Trường hợp w là số thực: Nếu a là một số thực

+a < 0 ; a có các căn bậc hai là Các dạng bài tập Toán 12 (có lời giải) .

+ a = 0, a có đúng một căn bậc hai là 0.

+a > 0, acó hai căn bậc hai là Các dạng bài tập Toán 12 (có lời giải) .

Trường hợp w = a + bi;a, b ∈ R; b ≠ 0

Gọi z = x + yi là một căn bậc hai của w khi và chỉ khi z2 = w, tức là

Các dạng bài tập Toán 12 (có lời giải)

Mỗi cặp số thực (x; y) nghiệm đúng hệ phương trình trên cho ta một căn bậc hai x + y.i của số phức w = a + bi.

Ví dụ 1:Tìm các căn bậc hai của w = -5 + 12i.

Lời giải:

Gọi z = x + yi là một căn bậc hai của số phức w = -5 + 12i

Ta có z2 = w <=> (x + yi)2 = -5 + 12i

<=> Các dạng bài tập Toán 12 (có lời giải)

Vậy số phức w có hai căn bậc hai là 2 + 3i và -2 - 3i.

Ví dụ 2:Khai căn bậc hai số phức z = -3 + 4i có kết quả:

Lời giải:

Giả sử w = x + yi là một căn bậc hai của số phức z = -3 + 4i.

Ta có:

w2 = z <=> (x + yi)2 = -3 + 4i

Các dạng bài tập Toán 12 (có lời giải)

Do đó z có hai căn bậc hai là:

z1 = 1 + 2i

z2 = -1 - 2i

Ví dụ 3:Tính căn bậc hai của số phức z = 8 + 6i ra kết quả:

Các dạng bài tập Toán 12 (có lời giải)

Lời giải:

Giả sử w = x + yi là một căn bậc hai của số phức z = 8 + 6i.

Các dạng bài tập Toán 12 (có lời giải)

Ta có:

Do đó z có hai căn bậc hai là Các dạng bài tập Toán 12 (có lời giải)

Chọn đáp án A.

Ví dụ 4: Cho z = 3 + 4i. Tìm căn bậc hai của z.

A. -2 + i và 2 - i         B. 2 + i và 2 - i

C. 2 + i và -2 - i         D. 3 - 2i và 2 - 3i

Lời giải:

Giả sử w = x + yi là một căn bậc hai của số phức z = 3 + 4i.

Ta có:

Các dạng bài tập Toán 12 (có lời giải)

Do đó z có hai căn bậc hai là Các dạng bài tập Toán 12 (có lời giải)

Chọn đáp án A.

Ví dụ 5: Căn bậc hai của số phức 4 + 6√5i là:

A.-(3 + √5i)        B.(3 + √5i)         C.Các dạng bài tập Toán 12 (có lời giải)         D. 2

Lời giải:

Giả sử w là một căn bậc hai của 4 + 6√5i. Ta có:

Các dạng bài tập Toán 12 (có lời giải)

Chọn đáp án A.

Ví dụ 6:Gọi z là căn bậc hai có phần ảo âm của 33 - 56i. Phần thực của z là:

A. 6        B. 7        C. 4        D. –4

Lời giải:

Ta có: 33 - 56i = (7 - 4i)2 => z = 7 - 4i

Do đó phần thực của z là 7.

Chọn đáp án A.

Ví dụ 7:Trong C , căn bậc hai của -121 là:

A. -11i        B. 11i        C. -11        D.11i và -11i

Lời giải:

Ta có: z = -121 nên z = (11i)2.

Do đó z có hai căn bậc hai là z = 11i và z = -11i

Chọn đáp án D.

Ví dụ 8: Tìm các căn bậc hai của -9.

A. ±3i        B. -3        C. 3i        D. -3i

Lời giải:

Ta có -9 = 9i2 nên -9 có các căn bậc hai là 3i và -3i.

Chọn đáp án A.

Bài 1. Tìm các căn bậc hai của w = -3 + 12i.

Bài 2. Tìm các căn bậc hai của số phức z = 8 + 5i.

Bài 3. Tìm căn bậc hai của số phức z = 1 + i3.

Bài 4. Tìm tất cả các giá trị thực của m để 3 +mi là một căn bậc hai của 5 – 12i.

Bài 5. Tìm một căn bậc hai w của số phức z = -7 + 24i.

Bài 6. Tìm căn bậc hai của số phức z = 3 + 4i.

Bài 7. Tìm căn bậc hai của -12 trong tập số phức ℂ.

Bài 8. Tìm căn bậc hai của số phức: -1 + 22i.

Bài 9. Tìm căn bậc hai của số phức:

a) 8 + 6i;               b) 1 – i.                

Bài 10. Tìm căn bậc hai của số phức:

a) 16 – 30i;            b) -8 + 6i;              c) -3 + 4i.

Xem thêm các dạng bài tập Toán lớp 12 ôn thi Tốt nghiệp có lời giải hay khác:


so-phuc.jsp


Giải bài tập lớp 12 sách mới các môn học