Cách giải phương trình bậc 2 số phức (cực hay, chi tiết)



Bài viết Cách giải phương trình bậc 2 số phức với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách giải phương trình bậc 2 số phức.

Bài giảng: Các phép biến đổi cơ bản trên tập hợp số phức - Cô Nguyễn Phương Anh (Giáo viên VietJack)

- Giải các phương trình bậc hai với hệ số thực

Cho phương trình bậc hai ax2 + bx + c = 0( a;b;c ∈ R;a ≠ 0).

Xét Δ = b2 - 4ac, ta có

+ Δ = 0 phương trình có nghiệm thực x = Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án .

+ Δ > 0 : phương trình có hai nghiệm thực được xác định bởi công thức:

Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án

+ Δ < 0 : phương trình có hai nghiệm phức được xác định bởi công thức:

Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án

+ Chú ý.

Mọi phương trình bậc n: Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án luôn có n nghiệm phức (không nhất thiết phân biệt).

Hệ thức Vi–ét đối với phương trình bậc hai với hệ số thực: Cho phương trình bậc hai ax2 + bx + c = 0( a; b;c ∈ R;a ≠ 0 có hai nghiệm phân biệt x1;x2 (thực hoặc phức).

Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án

- Phương trình quy về phương trình bậc hai với hệ số thực

Phương pháp 1: Phân tích đa thức thành nhân tử:

– Bước 1: Nhẩm 1 nghiệm đặc biệt của phương trình.

+ Tổng các hệ số trong phương trình là 0 thì phương trình có một nghiệm x = 1.

+ Tổng các hệ số biến bậc chẵn bằng tổng các hệ số biến bậc lẻ thì phương trình có một nghiệm x= -1.

– Bước 2: Đưa phương trình về phương trình bậc nhất hoặc bậc hai bằng cách hân tích đa thức ở vế trái của phương trình thành nhân tử (dùng hẳng đảng thức, chia đa thức hoặc sử dụng lược đồ Hoocne) như sau:

Với đa thức f(x) = anxn + an - 1xn - 1 + .... + a1x + ao chia cho x - a có thương là

g(x) = bnxn + bn - 2xn - 2 + .... + b1x + bo dư r

an an-1 an-2 a2 a1 ao
a bn-1 = an bn-2 = abn-1 + an-2 bn-3 = abn-2 + an-3 b1 = ab2 + a2 bo = ab1 + a1 r = abo + bo

– Bước 3: Giải phương trình bậc nhất hoặc bậc hai, kết luận nghiệm

Phương pháp 2: Đặt ẩn phụ:

– Bước 1: Phân tích phương trình thành các đại lượng có dạng giống nhau.

– Bước 2: Đặt ẩn phụ, nêu điều kiện của ẩn phụ (nếu có).

– Bước 3: Đưa phương trình ban đầu về phương trình bậc nhất, bậc hai với ẩn mới.

– Bước 4: Giải phương trình, kết luận nghiệm.

Ví dụ 1:Giải phương trình bậc hai sau: z2 - z + 1 = 0

Lời giải:

Ta có a = 1 ; b = -1 ; c = 1 nên Δ = b2 - 4ac = -3 < 0

Phương trình có hai nghiệm phức phân biệt là Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án

Ví dụ 2:Trong C , nghiệm của phương trình z2 + √5 = 0 là:

Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án

Lời giải:

Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án

Chọn đáp án B

Ví dụ 3:Trong C , nghiệm của phương trình z3 - 8 = 0 là :

Lời giải:

Sử dụng hằng đẳng thức số 7, ta có:

Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án

Vậy phương trình đã cho có 3 nghiệm phân biệt.

Ví dụ 4:Trong C , phương trình z2 + 3iz + 4 = 0 có nghiệm là:

Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án

Lời giải:

Ta có : a = 1 ; b = i ; c = 4 nên :

Δ = b2 - 4ac = (3i)2 - 4.1.4 = -25 <0

Phương trình có hai nghiệm phức là:

Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án

Chọn đáp án A.

Ví dụ 5:Cho z = 1 - i. Tìm căn bậc hai dạng lượng giác của z:

Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án

Lời giải:

Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án

Chọn đáp án A.

Ví dụ 6: Trong C , phương trình (z2 + i)(z2- 2iz - 1) = 0 có nghiệm là:

Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án

Lời giải:

Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án

Chọn đáp án A.

Ví dụ 7:Trong C , phương trình Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án có nghiệm là:

(1 ± √3)i        B. (5 ± √2)i        C. (1 ± √2)i        D.(2 ± √(5)i)

Lời giải:

Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án

Chọn đáp án A.

Câu 1:Trong C, phương trình 2x2 + x + 1 = 0 có nghiệm là:

Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án

Lời giải:

Đáp án : A

Giải thích :

Ta có:Δ = b2 - 4ac = 12 - 4.1.1 = -7 = 7i2 <0

nên phương trình có hai nghiệm phức là:

Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án

Câu 2:Trong C , phương trình z2 - z + 1 = 0 có nghiệm là:

Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án

Lời giải:

Đáp án : D

Giải thích :

Δ = b2 - 4ac = -3 < 0

Nên phương trình có hai nghiệm phức là:

Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án

Câu 3:Trong C , nghiệm của phương trình z2 = -5 + 12i là:

Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án

Lời giải:

Đáp án : A

Giải thích :

Giả sử z = x + yi là một nghiệm của phương trình.

Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án

Do đó phương trình có hai nghiệm là Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án

Câu 4: Trong C , phương trình z4-6z2 + 25 = 0 có nghiệm là:

Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án

Lời giải:

Đáp án : D

Giải thích :

Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án

Câu 5:Biết z1;z2 là hai nghiệm của phương trình z2 + √3 z + 3 = 0. Khi đó giá trị của z12 + z22 là:

Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án

Lời giải:

Đáp án : D

Giải thích :

Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án

Câu 6: Phương trình z2 + az + b = 0 có một nghiệm phức là z = 1 + 2i. Tổng 2 số a và b bằng:

A. 0        B.        C. 3        D. -1

Lời giải:

Đáp án : C

Giải thích :

Vì z = 1 + 2i là một nghiệm của phương trình z2 + az + b = 0 nên ta có:

(1 + 2)2 + a(1 + 2i) + b = 0

<=> a + b + 2ai = 3 - 4i

<=> a + b = 3

Câu 7:Gọi z1;z2 là hai nghiệm phức của phương trình z2 - 4z + 5 = 0. Khi đó phần thực của z12 + z22 là:

A. 5        B. 6        C. 4        D. 7

Lời giải:

Đáp án : B

Giải thích :

Theo Viet, ta có: Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án

Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án

Câu 8:Gọi z1;z2 là hai nghiệm phức của phương trình z2 + 2z + 4 = 0. Khi đó A = |z1|2 + |z2|2 có giá trị là

A.-7         B. – 8         C.-4        D. 8

Lời giải:

Đáp án : D

Giải thích :

Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án

Câu 9: Cho số phức z thỏa mãn z2 - 6z + 13 = 0. Tính Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án

A. √17 và 4        B. √17 và 5        C. √17 và 3        D. √17 và 2

Lời giải:

Đáp án : B

Giải thích :

Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án

Câu 10: Gọi z1;z2 là các nghiệm phức của phương trình z2 + (1-3i)z - 2(1+i) = 0. Khi đó w = z12 + z22 - 3 z1z2 là số phức có môđun là:

A.5        B.√13        C. 2√13        D. √20

Lời giải:

Đáp án : D

Giải thích :

Theo Viet, ta có: Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án

Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án

Câu 11: Số nghiệm của phương trình với ẩn số phức z: 4z2 + 8|z|2 -3 = 0 là:

A. 3        B. 2        C. 4        D. 1

Lời giải:

Đáp án : C

Giải thích :

Gọi z = a + bi là nghiệm của phương trình.

Ta có:

Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án

Vậy phương trình có 4 nghiệm phức

Câu 12: Cho phương trình z2 + mz - 6i = 0. Để phương trình có tổng bình phương hai nghiệm bằng 5 thì m = +(a + bi) (a,b ∈ R) có dạng . Giá trị a+2b là:

A. 0         B. 1        C. -2        D. -1

Lời giải:

Đáp án : D

Giải thích :

Gọi z1;z2 là hai nghiệm của phương trình đã cho

Theo Viet, ta có: Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án

Theo bài cho, tổng bình phương hai nghiệm bằng 5. Ta có:

Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án

Câu 13:Gọi z1;z2;z3;z4 là các nghiệm phức của phương trình Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án Giá trị của Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án là :

Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án

Lời giải:

Đáp án : B

Giải thích :

Với mọi Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án , ta có:

Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án

Bài 1. Trong C, tìm nghiệm của phương trình z3 - 8 = 0.

Bài 2. Giải phương trình: z2 + 3iz + 4 = 0.

Bài 3. Giải phương trình: (z2 + i)(z2 - 2iz - 1) = 0.

Bài 4. Giải phương trình: z + 1z = 2i.

Bài 5. Giải phương trình:

a) 2x2 + x + 1 = 0.

b) z2 – z + 1 = 0.

c) z2 = –5 + 12i.

Xem thêm các dạng bài tập Toán lớp 12 có trong đề thi THPT Quốc gia khác:


so-phuc.jsp


Giải bài tập lớp 12 sách mới các môn học