Các dạng bài tập Thể tích Khối đa diện chọn lọc, có đáp án
Phần Thể tích khối đa diện Toán lớp 12 với các dạng bài tập chọn lọc có trong Đề thi THPT Quốc gia và trên 100 bài tập trắc nghiệm chọn lọc, có đáp án. Vào Xem chi tiết để theo dõi các dạng bài Thể tích khối đa diện hay nhất tương ứng.
- Lý thuyết Công thức tính diện tích tam giác và tứ giác Xem chi tiết
- Lý thuyết Phương pháp xác định góc giữa hai mặt phẳng, giữa đường thẳng và mặt phẳng Xem chi tiết
- Lý thuyết Công thức tính thể tích đa diện Xem chi tiết
- Tổng hợp Công thức tính thể tích khối chóp các trường hợp (cực hay) Xem chi tiết
- Dạng 1: Tính thể tích khối chóp có cạnh bên vuông góc với đáy Xem chi tiết
- Dạng 2: Tính thể tích khối chóp có hình chiếu vuông góc của đỉnh lên mặt đáy Xem chi tiết
- Dạng 3: Tính thể tích khối chóp có mặt bên vuông góc với đáy Xem chi tiết
- Dạng 4: Tính tỉ số thể tích hai khối chóp Xem chi tiết
- Phương pháp tính thể tích hình chóp có cạnh bên vuông góc với đáy Xem chi tiết
- Phương pháp tính thể tích hình chóp có mặt bên vuông góc với đáy Xem chi tiết
- Phương pháp tính thể tích khối đa diện đều (cực hay) Xem chi tiết
- Phương pháp tính tỉ số thể tích của hai khối chóp (cực hay) Xem chi tiết
- Phương pháp tính thể tích các khối đa diện (cực hay) Xem chi tiết
- Lý thuyết Thể tích khối lăng trụ Xem chi tiết
- Dạng 1: Tính thể tích khối lăng trụ đứng, lăng trụ đều Xem chi tiết
- Dạng 2: Tính thể tích khối lăng trụ xiên Xem chi tiết
- Tính thể tích khối lăng trụ đứng biết chiều cao và độ dài cạnh đáy Xem chi tiết
- Tính thể tích khối lăng trụ đứng biết góc giữa đường thẳng và mặt phẳng Xem chi tiết
- Tính thể tích khối lăng trụ đứng biết góc giữa hai mặt phẳng Xem chi tiết
- Phương pháp tính thể tích khối lăng trụ đều (cực hay) Xem chi tiết
- Phương pháp tính thể tích khối lăng trụ xiên (cực hay) Xem chi tiết
Tính thể tích khối chóp có cạnh bên vuông góc với đáy
Chú ý khi giải toán
+ Một hình chóp có một cạnh bên vuông góc với đáy thì cạnh bên đó chính là đường cao.
+ Một hình chóp có hai mặt bên kề nhau cùng vuông góc với đáy thì cạnh bên là giao tuyến của hai mặt đó vuông góc với đáy
Bài 1: Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân ở B, AC=a√2, SA vuông góc với mặt phẳng (ABC), SA = a. Tính thể tích khối chóp S.ABC
Lời giải:
ABC là tam giác vuông cân ở B, AC=a√2 nên
SA vuông góc với mặt phẳng ABC nên SA là đường cao
Bài 2: Cho khối chóp S.ABC có SA vuông góc với đáy, SA = 4; AB = 6; BC = 10 và CA = 8. Tính thể tích V của khối chóp S.ABC
Lời giải:
Nửa chu vi của tam giác là: p = 12
Bài 3: Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. SA vuông góc với mặt phẳng (ABC). Góc giữa đường thẳng SB và mặt phẳng (ABC) bằng 30º.Tính theo a thể tích của khối chóp S.ABC
Lời giải:
Do SA ⊥ (ABC) nên AB là hình chiếu vuông góc của SB lên mặt phẳng (ABC).
⇒ Góc giữa đường thẳng SB và mặt phẳng (ABC) là
Xét tam giác SAB vuông tại A có:
∆ABC đều cạnh a nên
Cách tính thể tích khối lăng trụ đứng, lăng trụ đều
1. Khối lăng trụ đứng
Định nghĩa: Hình lăng trụ đứng là hình lăng trụ có cạnh bên vuông góc với mặt đáy.
Tính chất:
+ Các mặt bên hình lăng trụ đứng là hình chữ nhật
+ Các mặt bên hình lăng trụ đứng vuông góc với mặt đáy
+ Chiều cao là cạnh bên
2. Khối lăng trụ đều
Định nghĩa: Hình lăng trụ đều là hình lăng trụ đứng có đáy là đa giác đều
Tính chất:
+ Các mặt bên của hình lăng trụ đều là các hình chữ nhật bằng nhau
+ Chiều cao là cạnh bên.
Bài 1: Cho hình hộp đứng có các cạnh AB = 3a, AD = 2a, AA’= 2a. Tính thể tích của khối A’.ACD’
Lời giải:
Do mặt bên ADD’A’ là hình chữ nhật nên ta có:
Bài 2: Cho hình lăng trụ đứng ABC.A’B’C’ có đáy là tam giác đều cạnh a√3, góc giữa và đáy là 60º. Gọi M là trung điểm của . Thể tích của khối chóp M.A’B’C’ là:
Lời giải:
Bài 3: Cho khối lăng trụ đứng ABC.A1 B1 C1 có đáy ABC là tam giác vuông cân tại B có BA = BC = 2a, biết A1 M=3a với M là trung điểm của BC. Tính thể tích khối lăng trụ ABC.A1 B1 C1
Lời giải:
Ta có:
Bài 4: Cho khối lăng trụ đứng có đáy ABC.A’B’C’ với AB= a; AC = 2a và ∠(BAC)=120º, mặt phẳng (A'BC) hợp với đáy một góc 60º. Tính thể tích khối lăng trụ ABC.A’B’C’ là:
Lời giải:
Dựng A'M ⊥ BC, ta có:
Ta có:
Do AM ⊥ BC nên
Xét tam giác AAM vuông tại A có:
Xem thêm các dạng bài tập Toán lớp 12 có trong đề thi THPT Quốc gia khác:
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Lớp 12 Kết nối tri thức
- Soạn văn 12 (hay nhất) - KNTT
- Soạn văn 12 (ngắn nhất) - KNTT
- Giải sgk Toán 12 - KNTT
- Giải sgk Vật Lí 12 - KNTT
- Giải sgk Hóa học 12 - KNTT
- Giải sgk Sinh học 12 - KNTT
- Giải sgk Lịch Sử 12 - KNTT
- Giải sgk Địa Lí 12 - KNTT
- Giải sgk Giáo dục KTPL 12 - KNTT
- Giải sgk Tin học 12 - KNTT
- Giải sgk Công nghệ 12 - KNTT
- Giải sgk Hoạt động trải nghiệm 12 - KNTT
- Giải sgk Giáo dục quốc phòng 12 - KNTT
- Giải sgk Âm nhạc 12 - KNTT
- Giải sgk Mĩ thuật 12 - KNTT
- Lớp 12 Chân trời sáng tạo
- Soạn văn 12 (hay nhất) - CTST
- Soạn văn 12 (ngắn nhất) - CTST
- Giải sgk Toán 12 - CTST
- Giải sgk Vật Lí 12 - CTST
- Giải sgk Hóa học 12 - CTST
- Giải sgk Sinh học 12 - CTST
- Giải sgk Lịch Sử 12 - CTST
- Giải sgk Địa Lí 12 - CTST
- Giải sgk Giáo dục KTPL 12 - CTST
- Giải sgk Tin học 12 - CTST
- Giải sgk Hoạt động trải nghiệm 12 - CTST
- Giải sgk Âm nhạc 12 - CTST
- Lớp 12 Cánh diều
- Soạn văn 12 Cánh diều (hay nhất)
- Soạn văn 12 Cánh diều (ngắn nhất)
- Giải sgk Toán 12 Cánh diều
- Giải sgk Vật Lí 12 - Cánh diều
- Giải sgk Hóa học 12 - Cánh diều
- Giải sgk Sinh học 12 - Cánh diều
- Giải sgk Lịch Sử 12 - Cánh diều
- Giải sgk Địa Lí 12 - Cánh diều
- Giải sgk Giáo dục KTPL 12 - Cánh diều
- Giải sgk Tin học 12 - Cánh diều
- Giải sgk Công nghệ 12 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 12 - Cánh diều
- Giải sgk Giáo dục quốc phòng 12 - Cánh diều
- Giải sgk Âm nhạc 12 - Cánh diều