Lý thuyết Hàm số lớp 10 (hay, chi tiết)



Bài viết Lý thuyết Hàm số lớp 10 hay, chi tiết giúp bạn nắm vững kiến thức trọng tâm Lý thuyết Hàm số.

Bài giảng: Bài 1: Hàm số - Thầy Lê Thành Đạt (Giáo viên VietJack)

1. Hàm số. Tập xác định của hàm số

Giả sử có hai đại lượng biếnthiên x và y, trong đó x nhận giá trị thuộc tập số D.

Nếu với mỗi giá trị của x thuộc tập D có một và chỉ một giá trị tương ứng của x thuộc tập số thực R thì ta có một hàm số.

Ta gọi x là biến số và y là hàm số của x.

Tập hợp D được gọi là tập xác định của hàm số.

2. Cách cho hàm số

Một hàm số có thể được cho bằng các cách sau.

Hàm số cho bằng bảng

Hàm số cho bằng biểu đồ

Hàm số cho bằng công thức

Tập xác định của hàm số y = f(x) là tập hợp tất cả các số thực x sao cho biểu thức f(x) có nghĩa.

3. Đồ thị của hàm số

Đồ thị của hàm số y = f(x) xác định trên tập D là tập hợp tất cả các điểm M(x,f(x)) trên mặt phẳng tọa độ với x thuộc D.

1. Ôn tập

Hàm số y = f(x) gọi là đồng biến (tăng) trên khoảng (a ; b) nếu

∀x1, x2 ∈ (a ; b) : x1 < x2 => f(x1) < f(x2)

Hàm số y = f(x) gọi là nghịch biến (giảm) trên khoảng (a ; b) nếu :

∀x1, x2 ∈ (a ; b) : x1 < x2 => f(x1) > f(x2)

2. Bảng biến thiên

Xét chiều biến thiên của một hàm số là tìm các khoảng đồng biến và các khoảng nghịch biến của nó. Kết quả xét chiều biến thiên được tổng kết trong một bảng gọi là bảng biến thiên.

Ví dụ. Dưới đây là bảng biến thiên của hàm số y = x2.

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Hàm số y = x2 xác định trên khoảng (hoặc trong khoảng) ( –∞ ; +∞) và khi x dần tới +∞ hoặc dần tới –∞ thì y đều dần tới +∞.

Tại x = 0 thì y = 0.

Để diễn tả hàm số nghịch biến trên khoảng (–∞ ; 0) ta vẽ mũi tên đi xuống (từ +∞ đến 0).

Để diễn tả hàm số đồng biến trên khoảng (0 ; +∞) ta vẽ mũi tên đi lên (từ 0 đến +∞).

Nhìn vào bảng biến thiên, ta sơ bộ hình dung được đồ thị hàm số (đi lên trong khoảng nào, đi xuống trong khoảng nào).

1. Hàm số chẵn, hàm số lẻ

Hàm số y = f(x) với tập xác định D gọi là hàm số chẵn nếu

∀x ∈ D thì – x ∈ D và f( –x) = f(x)

Hàm số y = f(x) với tập xác định D gọi là hàm số lẻ nếu

∀x ∈ D thì – x ∈ D và f(–x) = – f(x)

2. Đồ thị của hàm số chẵn, hàm số lẻ

Đồ thị của một hàm số chẵn nhận trục tung làm trục đối xứng.

Đồ thị của một hàm số lẻ nhận gốc tọa độ là tâm đối xứng.

Xem thêm các dạng bài tập Toán 10 có đáp án hay khác:

Lời giải bài tập lớp 10 sách mới:


ham-so-bac-nhat-va-bac-hai.jsp


Giải bài tập lớp 10 sách mới các môn học