Lý thuyết Bất phương trình bậc nhất hai ẩn lớp 10 (hay, chi tiết)
Bài viết Lý thuyết Bất phương trình bậc nhất hai ẩn lớp 10 hay, chi tiết giúp bạn nắm vững kiến thức trọng tâm Lý thuyết Bất phương trình bậc nhất hai ẩn.
Bài giảng: Bài 4: Bất phương trình bậc nhất hai ẩn - Thầy Lê Thành Đạt (Giáo viên VietJack)
I. BẤT PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN
Bất phương trình bậc nhất hai ẩn x, y có dạng tổng quát là
ax + by ≤ c (1)
(ax + by < c; ax + by ≥ c; ax + by > c)
trong đó a, b, c là những số thực đã cho, a và b không đồng thời bằng 0, x và y là các ẩn số.
II. BIỂU DIỄN TẬP NGHIỆM CỦA BẤT PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN
Cũng như bất phương trình bậc nhất một ẩn, các bất phương trình bậc nhất hai ẩn thường có vô số nghiệm và để mô tả tập nghiệm của chúng, ta sử dụng phương pháp biểu diễn hình học.
Trong mặt phẳng tọa độ Oxy, tập hợp các điểm có tọa độ là nghiệm của bất phương trình (1) được gọi là miền nghiệm của nó.
Từ đó ta có quy tắc thực hành biểu diễn hình học tập nghiệm (hay biểu diễn miền nghiệm) của bất phương trình ax + by ≤ c như sau (tương tự cho bất phương trình ax + by ≥ c)
Bước 1. Trên mặt phẳng tọa độ Oxy, vẽ đường thẳng Δ: ax + by = c.
Bước 2. Lấy một điểm Mo(xo; yo) không thuộc Δ (ta thường lấy gốc tọa độ )
Bước 3. Tính axo + byo và so sánh axo + byo với c.
Bước 4. Kết luận
Nếu axo + byo < c thì nửa mặt phẳng bờ Δ chứa M0 là miền nghiệm của axo + byo ≤ c
Nếu axo + byo > c thì nửa mặt phẳng bờ Δ không chứa M0 là miền nghiệm của axo + byo ≤ c
Chú ý:
Miền nghiệm của bất phương trình axo + byo ≤ c bỏ đi đường thẳng ax + by = c là miền nghiệm của bất phương trình axo + byo < c
Ví dụ. Biểu diễn hình học tập nghiệm của bất phương trình 2x + y ≤ 3
Giải
Vẽ đường thẳng Δ: 2x + y = 3
Lấy gốc tọa độ O(0;0) ta thấy O ∉ Δ và có 2.0 + 0 < 3 nên nửa mặt phẳng bờ Δ chứa gốc tọa độ O là miền nghiệm của bất phương trình đã cho (miền không bị tô đậm trong hình).
III – HỆ BẤT PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN
Tương tự hệ bất phương trình một ẩn
Hệ bất phương trình bậc nhất hai ẩn gồm một số bất phương trình bậc nhất hai ẩn x, y mà ta phải tìm các nghiệm chung của chúng. Mỗi nghiệm chung đó được gọi là một nghiệm của hệ bất phương trình đã cho.
Cũng như bất phương trình bậc nhất hai ẩn, ta có thể biểu diễn hình học tập nghiệm của hệ bất phương trình bậc nhất hai ẩn.
Ví dụ 2. Biểu diễn hình học tập nghiệm của hệ bất phương trình
Giải.
Vẽ các đường thẳng
d1: 3x + y = 6
d2: x + y = 4
d3: x = 0 (Oy)
d4: y = 0 (Ox)
Vì điểm Mo (1;1) có tọa độ thỏa mãn tất cả các bất phương trình trong hệ trên nên ta tô đậm các nửa mặt phẳng bờ (d1), (d2), (d3), (d4) không chứa điểm M0. Miền không bị tô đậm (hình tứ giác OCIA kể cả bốn cạnh AI, IC, CO, OA trong hình vẽ là miền nghiệm của hệ đã cho.
IV. ÁP DỤNG VÀO BÀI TOÁN KINH TẾ
Giải một số bài toán kinh tế thường dẫn đến việc xét những hệ bất phương trình bậc nhất hai ẩn và giải chúng. Loại bài toán này được nghiên cứu trong một ngành toán học có tên gọi là Quy hoạch tuyến tính.
Xem thêm các dạng bài tập Toán 10 có đáp án hay khác:
- Lý thuyết Bất đẳng thức
- Lý thuyết Bất phương trình và hệ bất phương trình một ẩn
- Lý thuyết Dấu của nhị thức bậc nhất
- Lý thuyết Dấu của tam thức bậc hai
- Lý thuyết Tổng hợp chương Bất đẳng thức. Bất phương trình
Lời giải bài tập lớp 10 sách mới:
- Giải bài tập Lớp 10 Kết nối tri thức
- Giải bài tập Lớp 10 Chân trời sáng tạo
- Giải bài tập Lớp 10 Cánh diều
- Giải Tiếng Anh 10 Global Success
- Giải Tiếng Anh 10 Friends Global
- Giải sgk Tiếng Anh 10 iLearn Smart World
- Giải sgk Tiếng Anh 10 Explore New Worlds
- Lớp 10 - Kết nối tri thức
- Soạn văn 10 (hay nhất) - KNTT
- Soạn văn 10 (ngắn nhất) - KNTT
- Soạn văn 10 (siêu ngắn) - KNTT
- Giải sgk Toán 10 - KNTT
- Giải sgk Vật lí 10 - KNTT
- Giải sgk Hóa học 10 - KNTT
- Giải sgk Sinh học 10 - KNTT
- Giải sgk Địa lí 10 - KNTT
- Giải sgk Lịch sử 10 - KNTT
- Giải sgk Kinh tế và Pháp luật 10 - KNTT
- Giải sgk Tin học 10 - KNTT
- Giải sgk Công nghệ 10 - KNTT
- Giải sgk Hoạt động trải nghiệm 10 - KNTT
- Giải sgk Giáo dục quốc phòng 10 - KNTT
- Lớp 10 - Chân trời sáng tạo
- Soạn văn 10 (hay nhất) - CTST
- Soạn văn 10 (ngắn nhất) - CTST
- Soạn văn 10 (siêu ngắn) - CTST
- Giải Toán 10 - CTST
- Giải sgk Vật lí 10 - CTST
- Giải sgk Hóa học 10 - CTST
- Giải sgk Sinh học 10 - CTST
- Giải sgk Địa lí 10 - CTST
- Giải sgk Lịch sử 10 - CTST
- Giải sgk Kinh tế và Pháp luật 10 - CTST
- Giải sgk Hoạt động trải nghiệm 10 - CTST
- Lớp 10 - Cánh diều
- Soạn văn 10 (hay nhất) - Cánh diều
- Soạn văn 10 (ngắn nhất) - Cánh diều
- Soạn văn 10 (siêu ngắn) - Cánh diều
- Giải sgk Toán 10 - Cánh diều
- Giải sgk Vật lí 10 - Cánh diều
- Giải sgk Hóa học 10 - Cánh diều
- Giải sgk Sinh học 10 - Cánh diều
- Giải sgk Địa lí 10 - Cánh diều
- Giải sgk Lịch sử 10 - Cánh diều
- Giải sgk Kinh tế và Pháp luật 10 - Cánh diều
- Giải sgk Tin học 10 - Cánh diều
- Giải sgk Công nghệ 10 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 10 - Cánh diều
- Giải sgk Giáo dục quốc phòng 10 - Cánh diều