Giải Toán 9 trang 21 Tập 2 Chân trời sáng tạo

Với Giải Toán 9 trang 21 Tập 2 trong Bài 3: Định lí Viète Toán lớp 9 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 9 trang 21.

Bài 1 trang 21 Toán 9 Tập 2: Không giải phương trình, hãy tính tổng và tích các nghiệm (nếu có) của mỗi phương trình:

a) 3x2 – 9x + 5 = 0;

b) 25x2 – 20x + 4 = 0;

c) 5x2 – 9x + 15 = 0.

d) 5x223x3=0.

Lời giải:

a) Ta có Δ = (−9)2 – 4 . 3 . 5 = 21 > 0 nên phương trình có 2 nghiệm phân biệt x1, x2.

Theo định lí Viète, ta có: x1+x2=93=3;  x1x2=53.

b) Ta có Δ = (−20)2 – 4 . 25 . 4 = 0 nên phương trình có nghiệm kép x1, x2.

Theo định lí Viète, ta có: x1+x2=2025=45;  x1x2=425.

c) Ta có Δ = (−9)2 – 4 . 5 . 15 = –219 < 0 nên phương trình vô nghiệm.

d) Ta có Δ=232453=72>0  nên phương trình có 2 nghiệm phân biệt x1, x2.

Theo định lí Viète, ta có: x1+x2=235=3;  x1x2=35.

Bài 2 trang 21 Toán 9 Tập 2: Tính nhẩm nghiệm của các phương trình:

a) 24x2 – 19x – 5 = 0;

b) 2,5x2 + 7,2x + 4,7 = 0;

c) 32x2+5x+72=0;

d) 2x22+3x+3=0

Lời giải:

a) Phương trình 24x2 – 19x – 5 = 0 có a + b + c = 24 – 19 – 5 = 0.

Vậy phương trình có hai nghiệm là x1=1;  x2=ca=524.

b) Phương trình 2,5x2 + 7,2x + 4,7 = 0 có a – b + c = 2,5 – 7,2 + 4,7 = 0.

Vậy phương trình có hai nghiệm là x1=1;  x2=ca=4,72,5=4725.

c) Phương trình 32x2+5x+72=0 có ab+c=325+72=0.

Vậy phương trình có hai nghiệm là x1=1;  x2=ca=72:32=73.

d) Phương trình 2x22+3x+3=0a+b+c=22+3+3=0.

Vậy phương trình có hai nghiệm là x1=1;  x2=ca=32.

Bài 3 trang 21 Toán 9 Tập 2: Tìm hai số u và v (nếu có) trong mỗi trường hợp sau:

a) u + v = 29, uv = 154;

b) u + v = –6, uv = –135;

c) u + v = 5, uv = 24.

Lời giải:

a) Điều kiện để có hai số đó là: S2 − 4P ≥ 0 suy ra 292 – 4 . 154 = 225 ≥ 0.

Hai số cần tìm là nghiệm của phương trình x2 − 29x + 154 = 0.

Ta có Δ=29241154=225>0;  Δ=225=15.

Suy ra u=29+152=22;  v=29152=17.

Vậy hai số cần tìm là 22 và 7.

b) Điều kiện để có hai số đó là: S2 − 4P ≥ 0 suy ra (–6)2 – 4 . (–135) = 576 ≥ 0.

Hai số cần tìm là nghiệm của phương trình x2 + 6x –135 = 0.

Ta có Δ'=321135=144>0;  Δ=144=12.

Suy ra u=3+121=9;  v=3121=15.

Vậy hai số cần tìm là 9 và –15 .

c) Điều kiện để có hai số đó là: S2 − 4P ≥ 0 mà 52 – 4 . 24 = –71 < 0.

Vậy không tồn tại hai số u và v thỏa mãn u + v = 5, uv = 24.

Bài 4 trang 21 Toán 9 Tập 2: Cho phương trình x2 – 19x – 5 = 0. Gọi x1, x2 là hai nghiệm của phương trình. Không giải phương trình, hãy tính giá trị của các biểu thức:

a) A=x12+x22;

b) B=2x1+2x2;

c) C=3x1+2+3x2+2.

Lời giải:

Phương trình x2 – 19x – 5 = 0 có ∆ = (–19)2 – 4 . 1 . (–5) = 381 > 0 nên nó có hai nghiệm phân biệt x1, x2.

Theo định lí Viète, ta có: x1+x2=ba=19;  x1x2=ca=5.

a) Ta có A=x12+x22=x12+2x1x2+x222x1x2

=x1+x222x1x2= 192 – 2 . (–5) = 371.

Vậy A=x12+x22=371.

b) Ta có B=2x1+2x2=2x1+x2x1x2=2195=385.

Vậy B=2x1+2x2=385 .

c) Ta có C=3x1+2+3x2+2=3x2+2+x1+2x1+2x2+2

=3x1+x2+4x1x2+2x1+x2+4=319+45+219+4=6937.

Vậy C=3x1+2+3x2+2=6937.

Bài 5 trang 21 Toán 9 Tập 2: Một mảnh vườn hình chữ nhật có chu vi 116 m, diện tích 805 m2. Tính chiều dài và chiều rộng của mảnh vườn đó.

Lời giải:

Gọi x1, x2 (m) lần lượt là chiều dài và chiều rộng của khu vườn (0 < x1, x2 < 116).

Nửa chu vi khu vườn hình chữ nhật là 1162=58 (m) hay x1 + x2 = 58.

Diện tích khu vườn hình chữ nhật là 805 m2 hay x1 . x2 = 805.

Khi đó, x1, x2 là nghiệm của phương trình x2 − 58x + 805 = 0

Ta có Δ'=2921805=36;  Δ'=36=6.

Suy ra x1=29+61=35;  x2=2961=23 (thỏa mãn).

Vậy chiều dài khu vườn là 35 m và chiều rộng là 23 m.

Lời giải bài tập Toán 9 Bài 3: Định lí Viète hay khác:

Xem thêm lời giải bài tập Toán lớp 9 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 9 hay khác:


Giải bài tập lớp 9 Chân trời sáng tạo khác