Khám phá 2 trang 62 Toán 9 Tập 1 Chân trời sáng tạo

Khám phá 2 trang 62 Toán 9 Tập 1: a) Cho tam giác ABC vuông cân tại A có cạnh góc vuông bằng a (Hình 6a). Tính độ dài cạnh huyền BC theo a, rồi tính các tỉ số lượng giác của góc 45°.

b) Cho tam giác đều MNP có cạnh bằng a (Hình 6b). Tính độ dài đường cao MH theo a, rồi tính các tỉ số lượng giác của góc 30° và góc 60°.

Khám phá 2 trang 62 Toán 9 Tập 1 Chân trời sáng tạo | Giải Toán 9

Lời giải:

a) Xét tam giác ABC vuông cân tại A:

• Áp dụng định lý Pythagore, ta có:

BC2 = AB2 + AC2 = a2 + a2 = 2a2.

Suy ra BC = 2a2=a2.

• Các tỉ số lượng giác của góc 45° là:

sin45° = sin B = ACBC=aa2=12=22;

cos45° = cos B = ABBC=aa2=12=22;

tan45° = tan B = ACAB=aa=1;

cot45° = 1tan45°=11=1.

b) Xét tam giác MHN vuông tại H:

• Áp dụng định lý Pythagore, ta có: MN2 = MH2 + HN2.

Suy ra MH2 = MN2 - HN2a2 a22=3a24.

Do đó MH = 3a24=32a.

• Các tỉ số lượng giác của góc 30° là:

Khám phá 2 trang 62 Toán 9 Tập 1 Chân trời sáng tạo | Giải Toán 9

• Các tỉ số lượng giác của góc 60° là:

Khám phá 2 trang 62 Toán 9 Tập 1 Chân trời sáng tạo | Giải Toán 9

Lời giải bài tập Toán 9 Bài 1: Tỉ số lượng giác của góc nhọn hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 9 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 9 hay khác:


Giải bài tập lớp 9 Chân trời sáng tạo khác