Giải Toán 9 trang 87 Tập 1 Cánh diều

Với Giải Toán 9 trang 87 Tập 1 trong Bài 2: Một số hệ thức về cạnh và góc trong tam giác vuông Toán lớp 9 Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 9 trang 87.

Bài 4 trang 87 Toán 9 Tập 1: Cho tam giác ABC vuông cân tại A. Chứng minh AB = AC = 22BC.

Lời giải:

Bài 4 trang 87 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Vì ∆ABC vuông cân tại A nên B^=C ^=45° và AB = AC.

Ta có AB = BC.sinC = BC.22 = 22BC.

Mà AB = AC nên AB = AC = 22BC.

Bài 5 trang 87 Toán 9 Tập 1: Trong Hình 24, cho O^=α, AB = m và OAB^=OCA^=ODC^=90°.

Bài 5 trang 87 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Chứng minh:

a) OA = m.cot α;

b) AC = m.cos α;

c) CD = m.cos2 α.

Lời giải:

a) Xét ∆OAB vuông tại A, ta có: OA = AB.cot O = m.cot α.

b) Xét ∆OAC vuông tại C, ta có:

AC = OA.sinO = m.cotα.sinα = m.cosαsinα.sinα = mcosα.

(Theo kết quả câu b, Bài 7, SGK Toán 9, Tập 1, trang 81 ta có cotα=cosαsinα)

Vậy AC = m.cos α.

c) Xét ∆OAC vuông tại C, ta có:

OC = OA.cosO = m.cotα.cosα = m.cosαsinα.cosα = m.cos2αsinα.

(Theo kết quả câu b, Bài 7, SGK Toán 9, Tập 1, trang 81 ta có cotα=cosαsinα)

Xét ∆OCD vuông tại D, ta có:

CD = OC.sinO = m.cos2αsinα.sinα = mcos2α.

Vậy CD = m.cos2 α.

Bài 6 trang 87 Toán 9 Tập 1: Tính độ dài đường gấp khúc ABCDEGH (làm tròn kết quả đến hàng phần mười của centimét), biết các tam giác OAB, OBC, OCD, ODE, OEG, OGH là các tam giác vuông tại các đỉnh lần lượt là B, C, D, E, G, H; các góc O1, O2, O3, O4, O5, O6 đều bằng 30° và OA = 2 cm (Hình 25).

Bài 6 trang 87 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Lời giải:

Xét ∆OAB vuông tại B, có O^1=30°, theo Bài 3, SGK Toám 9, Tập 1, trang 86, ta có: AB = 12AO = 12.2 = 1 (cm).

Ta cũng có BO = AO.cosO^1 = 2.cos30o = 2.32 = 3 (cm).

Tương tự, ta cũng có:

⦁ BC = 12BO = 12.3 = 32(cm) và CO = BO.cosO2^ = 3.32 = 32 (cm).

⦁ CD = 12CO = 12.32 = 34 (cm) và DO = CO.cosO3^ = 32.32 = 334(cm).

⦁ DE = 12DO = 12.334 = 338 (cm) và EO = DO.cosO4^ = 334.32 = 98 (cm).

⦁ EG = 12EO = 12.98 = 916 (cm) và GO = EO.cosO5^ = 98.32 = 9316 (cm).

⦁ GH = 12GO = 12.9316 = 9332 (cm).

Vậy độ dài đường gấp khúc ABCDEGH là:

1+32+34+338+916+9332

=3232+16332+2432+12332+1832+9332=74+373324,3 (cm).

Bài 7 trang 87 Toán 9 Tập 1: Hình 26 minh hoạ một phần con sông có bề rộng AB = 100 m. Một chiếc thuyền đi thẳng từ vị trí B bên này bờ sông đến vị trí C bên kia bờ sông. Tính quãng đường BC (làm tròn kết quả đến hàng phần mười của mét), biết ABC^=35°.

Bài 7 trang 87 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Lời giải:

Xét ∆ABC vuông tại A, ta có: cosB=ABBC.

Do đó BC = ABcosB=100cos35°122,1 (m).

Vậy quãng đường BC khoảng 122,1 m.

Bài 8 trang 87 Toán 9 Tập 1: Từ vị trí A ở phía trên một tòa nhà có chiều cao AD = 68 m, bác Duy nhìn thấy vị trí C cao nhất của một tháp truyền hình, góc tạo bởi tia AC và tia AH theo phương nằm ngang là CAH^=43°. Bác Duy cũng nhìn thấy chân tháp tại vị trí B mà góc tạo bởi tia AB và tia AH là BAH^=28°, điểm H thuộc đoạn thẳng BC (Hình 27). Tính khoảng cách BD từ chân tháp đến chân tòa nhà và chiều cao BC của tháp truyền hình (làm tròn kết quả đến hàng phần mười của mét).

Bài 8 trang 87 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Lời giải:

Vì AH ⊥ BC và BD ⊥ BC nên AH // BD. Do đó ABD^=BAH^=28° (so le trong).

Khoảng cách BD từ chân tháp đến chân tòa nhà là:

BD = AD.cotABD^ = 68.cot28o ≈ 127,9 (m).

Do tứ giác ADBH có ADB^=AHB^=DBH^=90° nên ADBH là hình chữ nhật.

Suy ra AH = DB ≈ 127, 9 (m) và HB = AD = 68 (m).

Do ∆AHC vuông tại H, ta có CH = AH.tanCAH^ ≈ 127,9.tan43o ≈ 119,3 (m).

Chiều cao BC của tháp truyền hình là:

BC = BH + HC ≈ 68 + 119,3 = 187,3 (m).

Vậy khoảng cách BD từ chân tháp đến chân tòa nhà khoảng 127,9 mét và chiều cao BC của tháp truyền hình khoảng 187,3 mét.

Lời giải bài tập Toán 9 Bài 2: Một số hệ thức về cạnh và góc trong tam giác vuông hay khác:

Xem thêm lời giải bài tập Toán lớp 9 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 9 hay khác:


Giải bài tập lớp 9 Cánh diều khác