Khám phá 3 trang 75 Toán 8 Tập 1 Chân trời sáng tạo

Khám phá 3 trang 75 Toán 8 Tập 1: Cho tứ giác ABCD có P là giao điểm của hai đường chéo. Giải thích tại sao AB // CD và AD // BC trong mỗi trường hợp sau:

Trường hợp 1: AB = CD và AD = BC (Hình 7a).

Trường hợp 2: AB // CD và AB = CD (Hình 7b).

Trường hợp 3: AD // BC và AD = BC (Hình 7c).

Trường hợp 4: A^=C^,B^=D^ (Hình 7d).

Trường hợp 5: PA = PC, PB = PD (Hình 7e).

Khám phá 3 trang 75 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

Lời giải:

• Hình 7a):

Khám phá 3 trang 75 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

Xét DABC và DCDA có:

AB = CD; BC = DA; AC là cạnh chung

Do đó DABC = DCDA (c.c.c)

Suy ra BAC^=DCA^ và BCA^=DAC^ (các cặp góc tương ứng).

BAC^=DCA^ và hai góc này ở vị trí so le trong nên AB // CD.

BCA^=DAC^ và hai góc này ở vị trí so le trong nên AD // BC.

• Hình 7b):

Khám phá 3 trang 75 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

Ta có BAC^=DCA^ và hai góc này ở vị trí so le trong nên AB // CD.

Xét DABC và DCDA có:

AC là cạnh chung; BAC^=DCA^; AB = CD

Do đó DABC = DCDA (c.g.c)

Suy ra BCA^=DAC^ (hai góc tương ứng).

Mà hai góc này ở vị trí so le trong nên AD // BC.

• Hình 7c):

Khám phá 3 trang 75 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

Ta có: BCA^=DAC^ và hai góc này ở vị trí so le trong nên AD // BC.

Xét DABC và DCDA có:

AC là cạnh chung; BCA^=DAC^; BC = AD

Do đó DABC = DCDA (c.g.c)

Suy ra BAC^=DCA^ (hai góc tương ứng).

Mà hai góc này ở vị trí so le trong nên AB // CD.

• Hình 7d):

Khám phá 3 trang 75 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

Xét tứ giác ABCD ta có A^+B^+C^+D^=360° (định lí tổng các góc của một tứ giác)

A^=C^,B^=D^ nên ta có A^+B^+A^+B^=360°

Suy ra A^+B^=360°2=180° và A^+D^=180°

Do đó AD // BC và AB // CD.

• Hình 7e):

Khám phá 3 trang 75 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

Xét DPAB và DPCD có:

PA = PC; APB^=CPD^ (đối đỉnh); PB = PD

Do đó DPAB = DPCD (c.g.c)

Suy ra BAP^=DCP^ (hai góc tương ứng)

Hay BAC^=DCA^, mà hai góc này ở vị trí so le trong nên AB // CD.

Tương tự ta cũng chứng minh được DPAD = DPCB (c.g.c)

Suy ra DAP^=BCP^ (hai góc tương ứng)

Hay DAC^=BCA^, mà hai góc này ở vị trí so le trong nên AD // BC.

Lời giải bài tập Toán 8 Bài 4: Hình bình hành – Hình thoi hay, chi tiết khác:

Các bài học để học tốt Toán 8 Bài 4: Hình bình hành – Hình thoi:

Xem thêm lời giải bài tập Toán lớp 8 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 8 hay khác:


Giải bài tập lớp 8 Chân trời sáng tạo khác