Khám phá 2 trang 74 Toán 8 Tập 1 Chân trời sáng tạo

Khám phá 2 trang 74 Toán 8 Tập 1: Cho tứ giác ABCD có các cạnh đối song song. Gọi O là giao điểm của hai đường chéo. Hãy chứng tỏ:

‒ Tam giác ABC bằng tam giác CDA.

‒ Tam giác OAB bằng tam giác OCD.

Khám phá 2 trang 74 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

Lời giải:

Khám phá 2 trang 74 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

• Tứ giác ABCD có AB // DC và AD // BC.

Từ AB // DC suy ra A^1=C^1 (so le trong) và B^1=D^1 (so le trong).

Từ AD // BC suy ra A^2=C^2 (so le trong).

Xét DABC và DCDA có:

A^1=C^1; AC là cạnh chung; A^2=C^2

Do đó DABC = DCDA (g.c.g).

• Do DABC = DCDA nên AB = CD (hai cạnh tương ứng).

Xét DOAB và DOCD có:

A^1=C^1; AB = CD; B^1=D^1 (chứng minh trên)

Do đó DOAB = DOCD (g.c.g).

Lời giải bài tập Toán 8 Bài 4: Hình bình hành – Hình thoi hay, chi tiết khác:

Các bài học để học tốt Toán 8 Bài 4: Hình bình hành – Hình thoi:

Xem thêm lời giải bài tập Toán lớp 8 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 8 hay khác:


Giải bài tập lớp 8 Chân trời sáng tạo khác