Bài 2 trang 80 Toán 8 Tập 1 Chân trời sáng tạo
Bài 2 trang 80 Toán 8 Tập 1: Cho hình bình hành ABCD, kẻ AH vuông góc với BD tại H và CK vuông góc với BD tại K (Hình 20).
a) Chứng minh tứ giác AHCK là hình bình hành.
b) Gọi I là trung điểm của HK. Chứng minh IB = ID.
Lời giải:
a) Do ABCD là hình bình hành nên AD // BC và AD = BC.
Do AD // BC nên (so le trong)
Xét DADH và DCBK có:
;
AD = BC (chứng minh trên);
(do ).
Do đó DADH = DCBK (cạnh huyền – góc nhọn).
Suy ra AH = CK (hai cạnh tương ứng).
Ta có AH ⊥ DB và CK ⊥ DB nên AH // CK.
Tứ giác AHCK có AH // CK và AH = CK nên AHCK là hình bình hành (dấu hiệu nhận biết).
b) Do AHCK là hình bình hành (câu a) nên hai đường chéo AC và HK cắt nhau tại trung điểm của mỗi đường.
Mà I là trung điểm của HK (giả thiết) nên I là trung điểm của AC.
Do ABCD là hình bình hành nên hai đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường.
Mà I là trung điểm của AC nên I là trung điểm của BD, hay IB = ID.
Lời giải bài tập Toán 8 Bài 4: Hình bình hành – Hình thoi hay, chi tiết khác:
Bài 6 trang 81 Toán 8 Tập 1: Quan sát Hình 21. Chứng minh rằng tứ giác EFGH là hình thoi ....
Bài 9 trang 81 Toán 8 Tập 1: Tìm các hình bình hành và hình thang có trong Hình 22 ....
Các bài học để học tốt Toán 8 Bài 4: Hình bình hành – Hình thoi:
Xem thêm lời giải bài tập Toán lớp 8 Chân trời sáng tạo hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 8 hay khác:
- Giải sgk Toán 8 Chân trời sáng tạo
- Giải SBT Toán 8 Chân trời sáng tạo
- Giải lớp 8 Chân trời sáng tạo (các môn học)
- Giải lớp 8 Kết nối tri thức (các môn học)
- Giải lớp 8 Cánh diều (các môn học)
- Soạn văn 8 (hay nhất) - CTST
- Soạn văn 8 (ngắn nhất) - CTST
- Giải sgk Toán 8 - CTST
- Giải Tiếng Anh 8 Global Success
- Giải sgk Tiếng Anh 8 Smart World
- Giải sgk Tiếng Anh 8 Friends plus
- Giải sgk Khoa học tự nhiên 8 - CTST
- Giải sgk Lịch Sử 8 - CTST
- Giải sgk Địa Lí 8 - CTST
- Giải sgk Giáo dục công dân 8 - CTST
- Giải sgk Tin học 8 - CTST
- Giải sgk Công nghệ 8 - CTST
- Giải sgk Hoạt động trải nghiệm 8 - CTST
- Giải sgk Âm nhạc 8 - CTST