Bài 6 trang 72 Toán 8 Tập 1 Chân trời sáng tạo
Bài 6 trang 72 Toán 8 Tập 1: Cho hình thang cân ABCD có AB // CD. Qua giao điểm E của AC và BD, ta vẽ đường thẳng song song với AB và cắt AD, BC lần lượt tại F và G (Hình 16). Chứng minh rằng EG là tia phân giác của góc CEB.
Lời giải:
Do ABCD là hình thang cân nên AB // DC và AD = BC; AC = BD; (tính chất hình thang cân).
Xét DACD và DBDC có:
CD là cạnh chung;
AD = BC (chứng minh trên);
AC = BD (chứng minh trên).
Do đó DACD = DBDC (c.c.c)
Suy ra (hai góc tương ứng)
Lại có (chứng minh trên)
Nên hay .
Mặt khác EG // AB nên (đồng vị) và (so le trong).
Suy ra , do đó EG là tia phân giác của góc CEB.
Lời giải bài tập Toán 8 Bài 3: Hình thang – Hình thang cân hay, chi tiết khác:
Các bài học để học tốt Toán 8 Bài 3: Hình thang – Hình thang cân:
Xem thêm lời giải bài tập Toán lớp 8 Chân trời sáng tạo hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 8 hay khác:
- Giải sgk Toán 8 Chân trời sáng tạo
- Giải SBT Toán 8 Chân trời sáng tạo
- Giải lớp 8 Chân trời sáng tạo (các môn học)
- Giải lớp 8 Kết nối tri thức (các môn học)
- Giải lớp 8 Cánh diều (các môn học)
- Soạn văn 8 (hay nhất) - CTST
- Soạn văn 8 (ngắn nhất) - CTST
- Giải sgk Toán 8 - CTST
- Giải Tiếng Anh 8 Global Success
- Giải sgk Tiếng Anh 8 Smart World
- Giải sgk Tiếng Anh 8 Friends plus
- Giải sgk Khoa học tự nhiên 8 - CTST
- Giải sgk Lịch Sử 8 - CTST
- Giải sgk Địa Lí 8 - CTST
- Giải sgk Giáo dục công dân 8 - CTST
- Giải sgk Tin học 8 - CTST
- Giải sgk Công nghệ 8 - CTST
- Giải sgk Hoạt động trải nghiệm 8 - CTST
- Giải sgk Âm nhạc 8 - CTST