Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử (Lý thuyết Toán lớp 8) | Cánh diều
Với tóm tắt lý thuyết Toán lớp 8 Bài 4: Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 8.
Lý thuyết Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử
1. Phân tích đa thức thành nhân tử
Phân tích đa thức thành nhân tử (hay thừa số) là biến đổi đa thức đó thành một tích những đa thức.
Ví dụ: 3x2 + 3x = 3x(x + 1).
2. Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử
2.1. Phân tích đa thức thành nhân tử bằng phương pháp vận dụng trực tiếp hằng đẳng thức
Sử dụng các hằng đẳng thức để phân tích đa thức
A2 – B2 = (A – B)(A + B)
A3 + B3 = (A + B)(A2 – AB + B2);
A3 – B3 = (A – B)(A2 + AB + B2).
Ví dụ: 4 – 9x2 = 22 – (3x)2 = (2 – 3x)(2 + 3x)
8 – x3 = 23 – x3 = (2 – x)(22 + 2 . x + x2)
= (2 + x)(4 + 2x + x2)
2.2. Phân tích đa thức thành nhân tử bằng phương pháp vận dụng đằng đẳng thức thông qua nhóm hạng tử và đặt nhân tử chung
Để phân tích đa thức thành nhân tử ta làm như sau
- Nhóm các hạng tử thành nhóm
- Dùng hằng đẳng thức, đặt nhân tử chúng để viết nhóm thành tích.
Ví dụ: x2 + 2xy + y2 – x – y
= (x2 + 2xy + y2) – (x + y)
= (x + y)2 – (x + y)
= (x + y)(x + y – 1)
Bài tập Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử
Bài 1. Phân tích mỗi đa thức sau thành nhân tử:
a) 8x3 – 64 ;
b) x2 – 25 – 4xy + 4y2.
Hướng dẫn giải
a) 8x3 – 64 = (2x)3 – 43 = (2x – 4)(4x2 + 8x + 16).
b) x2 – 25 – 4xy + 4y2 = (x2 – 4xy + 4y2) – 25
= (x – 2y)2 – 25 = (x – 2y)2 – 52
= (x – 2y – 5)(x – 2y + 5).
Bài 2. Tính giá trị biểu thức sau:
A = x2y2 + 2xyz + z2 biết xy + z = 0.
Hướng dẫn giải
A = x2y2 + 2xyz + z2
= (xy)2 + 2xyz + z2 = (xy + z)2.
Thay xy + z = 0 vào biểu thức A ta được:
A = 02 = 0.
Vậy khi xy + z = 0 giá trị của biểu thức A bằng 0.
Vậy với xy + z = 0 thì A = 0.
Bài 3. Tìm x, biết:
a) x2 – 4x = 0;
b) (x – 3)2 + 3 – x = 0.
Hướng dẫn giải
a) x2 – 4x = 0
x . x – 4 . x = 0
x . (x – 4) = 0
x = 0 hoặc x – 4 = 0
x = 0 hoặc x = 4
Vậy x {0; 4}.
b) (x – 3)2 + 3 – x = 0
(x – 3)(x – 3) + ( –x + 3) = 0
(x – 3)(x – 3) – (x – 3) . 1 = 0
(x – 3)(x – 3 – 1) = 0
(x – 3)(x – 4) = 0
x – 3 = 0 hoặc x – 4 = 0
x = 3 hoặc x = 4
Vậy x {3; 4}.
Học tốt Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử
Các bài học để học tốt Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử Toán lớp 8 hay khác:
Giải sgk Toán 8 Bài 4: Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử
Giải sbt Toán 8 Bài 4: Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử
Xem thêm tóm tắt lý thuyết Toán lớp 8 Chân trời sáng tạo hay khác:
Lý thuyết Toán 8 Bài 2: Phép cộng, phép trừ phân thức đại số
Lý thuyết Toán 8 Bài 3: Phép nhân, phép chia phân thức đại số
Xem thêm các tài liệu học tốt lớp 8 hay khác:
- Giải sgk Toán 8 Cánh diều
- Giải SBT Toán 8 Cánh diều
- Giải lớp 8 Cánh diều (các môn học)
- Giải lớp 8 Kết nối tri thức (các môn học)
- Giải lớp 8 Chân trời sáng tạo (các môn học)
- Soạn văn 8 Cánh diều (hay nhất)
- Soạn văn 8 Cánh diều (ngắn nhất)
- Giải sgk Toán 8 - Cánh diều
- Giải Tiếng Anh 8 Global Success
- Giải sgk Tiếng Anh 8 Smart World
- Giải sgk Tiếng Anh 8 Friends plus
- Giải sgk Khoa học tự nhiên 8 - Cánh diều
- Giải sgk Lịch Sử 8 - Cánh diều
- Giải sgk Địa Lí 8 - Cánh diều
- Giải sgk Giáo dục công dân 8 - Cánh diều
- Giải sgk Tin học 8 - Cánh diều
- Giải sgk Công nghệ 8 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 8 - Cánh diều
- Giải sgk Âm nhạc 8 - Cánh diều