Bài 8 trang 16 Toán 12 Tập 2 Cánh diều

Bài 8 trang 16 Toán 12 Tập 2: Một quần thể vi khuẩn ban đầu gồm 500 vi khuẩn, sau đó bắt đầu tăng trưởng. Gọi P(t) là số lượng vi khuẩn của quần thể đó tại thời điểm t, trong đó t tính theo ngày (0 ≤ t ≤ 10). Tốc độ tăng trưởng của quần thể vi khuẩn đó cho bởi hàm số P'(t) = kt, trong đó k là hằng số. Sau 1 ngày, số lượng vi khuẩn của quần thể đó đã tăng lên thành 600 vi khuẩn (Nguồn: R. Larson and B. Edwards, Calculus 10e, Cengage 2014). Tính số lượng vi khuẩn của quần thể đó sau 7 ngày (làm tròn kết quả đến hàng đơn vị).

Lời giải:

Hàm số P(t) là một nguyên hàm của hàm số P'(t).

Ta có P'tdt=ktdt=kt12dt=2k3t32+C=2k3tt+C .

Suy ra Pt=2k3tt+C .

Quần thể vi khuẩn ban đầu gồm 500 vi khuẩn nên với t = 0 thì P = 500 hay P(0) = 500, suy ra 2k300+C=500 , do đó C = 500.

Suy ra Pt=2k3tt+500 .

Vì sau 1 ngày, số lượng vi khuẩn của quần thể đó đã tăng lên thành 600 vi khuẩn, tức là khi t = 1 thì P = 600, hay P(1) = 600, suy ra 2k311+500=600 , do đó k = 150.

Khi đó, công thức tính số lượng vi khuẩn của quần thể đó tại thời điểm t là:

Pt=21503tt+500=100tt+500    0t10.

Vậy số lượng vi khuẩn của quần thể đó sau 7 ngày là:

P7=10077+5002352(vi khuẩn).

Lời giải bài tập Toán 12 Bài 2: Nguyên hàm của một số hàm số sơ cấp hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 12 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:


Giải bài tập lớp 12 Cánh diều khác