Luyện tập 1 trang 45 Toán 11 Tập 2 - Kết nối tri thức

Luyện tập 1 trang 45 Toán 11 Tập 2: Cho hình chóp S.ABCD, đáy ABCD là một hình chữ nhật có tâm O, SO ⊥ (ABCD). Chứng minh rằng hai mặt phẳng (SAC) và (SBD) vuông góc với nhau khi và chỉ khi ABCD là một hình vuông.

Lời giải:

Luyện tập 1 trang 45 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Gọi O là giao điểm của AC và BD.

Vì SO ⊥ (ABCD) nên SO ⊥ AO và SO ⊥ BO mà (SAC) ∩ (SBD) = SO, suy ra góc giữa hai mặt phẳng (SAC) và (SBD) bằng góc giữa hai đường thẳng AO và BO.

Mà (AO, BO) = AOB^.

+) Nếu (SAC) ⊥ (SBD) thì AOB^=90°, khi đó AC ⊥ BD mà ABCD là hình chữ nhật, suy ra ABCD là hình vuông.

+) Nếu ABCD là hình vuông thì AC ⊥ BD, suy ra AOB^=90° hay (SAC) ⊥ (SBD).

Lời giải bài tập Toán 11 Bài 25: Hai mặt phẳng vuông góc hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:


Giải bài tập lớp 11 Kết nối tri thức khác