HĐ9 trang 93 Toán 11 Tập 2 - Kết nối tri thức

HĐ9 trang 93 Toán 11 Tập 2: Xây dựng công thức tính đạo hàm của hàm số mũ

a) Sử dụng giới hạn limh0ex1h=1 và đẳng thức ex + h – ex = ex(eh – 1), tính đạo hàm của hàm số y = ex tại x bằng định nghĩa.

b) Sử dụng hằng đẳng thức ax = exlna (0 < a ≠ 1), hãy tính đạo hàm của hàm số y = ax.

Lời giải:

a)

Với x bất kì và h = x – x0, ta có:

f'x0=limh0f(x0+h)f(x0)h=limh0ex0+hex0h

=limh0ex0eh1h=limh0ex0.limh0eh1h=ex0.

Vậy hàm số y = ex có đạo hàm là hàm số y' = ex.

b)

Ta có: ax = ex.ln a nên (ax)' = (ex.ln a)' = (x.ln a)' . ex.ln a = ex.ln a.ln a = ax.ln a.

Lời giải bài tập Toán 11 Bài 32: Các quy tắc tính đạo hàm hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:


Giải bài tập lớp 11 Kết nối tri thức khác