Thực hành 2 trang 61 Toán 11 Tập 2 Chân trời sáng tạo

Thực hành 2 trang 61 Toán 11 Tập 2: Cho tứ diện OABC có OA vuông góc với mặt phẳng (OBC) và có A′, B′, C′ lần lượt là trung điểm của OA, OB, OC. Vẽ OH là đường cao của tam giác OBC. Chứng minh rằng:

a) OA ⊥ (A ′B′C′) ;

b) B′ C′ ⊥ (OAH ).

Thực hành 2 trang 61 Toán 11 Tập 2 Chân trời sáng tạo | Giải Toán 11

Lời giải:

a) Xét tam giác OAB:

A′ là trung điểm OA

B′ là trung điểm AB

Nên A ′B′ là đường trung bình của ΔOAB.

Do đó A ′B′ // OB ⇒ A ′B′ // (OBC) (vì OB(OBC)

Tương tự: B′C′ là đường trung bình của ΔABC

Do đó B ′C′ // BC ⇒ B ′C′ // (OBC) (vì BC(OBC)

Ta có:

A' // OBC                 B'C' //OBC                 A',B'C'A'B'C'A'B'C' //OBC

Mà OA ⊥ (OBC)

Vậy OA ⊥ (A ′B′C′).

b) Ta có OA ⊥ (OBC) nên OA ⊥ BC

M à OH ⊥ BC (OH là đường cao của ΔOBC) , suy ra BC ⊥ (OAH)

Lại có: B′C′ // BC nên B ′C′ ⊥ (OAH).

Lời giải bài tập Toán 11 Bài 2: Đường thẳng vuông góc với mặt phẳng hay, chi tiết khác:

Các bài học để học tốt Toán 11 Bài 2: Đường thẳng vuông góc với mặt phẳng:

Xem thêm lời giải bài tập Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:


Giải bài tập lớp 11 Chân trời sáng tạo khác