Thực hành 2 trang 61 Toán 11 Tập 2 Chân trời sáng tạo
Thực hành 2 trang 61 Toán 11 Tập 2: Cho tứ diện OABC có OA vuông góc với mặt phẳng (OBC) và có A′, B′, C′ lần lượt là trung điểm của OA, OB, OC. Vẽ OH là đường cao của tam giác OBC. Chứng minh rằng:
a) OA ⊥ (A ′B′C′) ;
b) B′ C′ ⊥ (OAH ).
Lời giải:
a) Xét tam giác OAB:
A′ là trung điểm OA
B′ là trung điểm AB
Nên A ′B′ là đường trung bình của ΔOAB.
Do đó A ′B′ // OB ⇒ A ′B′ // (OBC) (vì
Tương tự: B′C′ là đường trung bình của ΔABC
Do đó B ′C′ // BC ⇒ B ′C′ // (OBC) (vì
Ta có:
Mà OA ⊥ (OBC)
Vậy OA ⊥ (A ′B′C′).
b) Ta có OA ⊥ (OBC) nên OA ⊥ BC
M à OH ⊥ BC (OH là đường cao của ΔOBC) , suy ra BC ⊥ (OAH)
Lại có: B′C′ // BC nên B ′C′ ⊥ (OAH).
Lời giải bài tập Toán 11 Bài 2: Đường thẳng vuông góc với mặt phẳng hay, chi tiết khác:
Các bài học để học tốt Toán 11 Bài 2: Đường thẳng vuông góc với mặt phẳng:
Xem thêm lời giải bài tập Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 11 hay khác:
- Giải sgk Toán 11 Chân trời sáng tạo
- Giải Chuyên đề học tập Toán 11 Chân trời sáng tạo
- Giải SBT Toán 11 Chân trời sáng tạo
- Giải lớp 11 Chân trời sáng tạo (các môn học)
- Giải lớp 11 Kết nối tri thức (các môn học)
- Giải lớp 11 Cánh diều (các môn học)
- Soạn văn 11 (hay nhất) - CTST
- Soạn văn 11 (ngắn nhất) - CTST
- Giải sgk Toán 11 - CTST
- Giải Tiếng Anh 11 Global Success
- Giải sgk Tiếng Anh 11 Smart World
- Giải sgk Tiếng Anh 11 Friends Global
- Giải sgk Vật Lí 11 - CTST
- Giải sgk Hóa học 11 - CTST
- Giải sgk Sinh học 11 - CTST
- Giải sgk Lịch Sử 11 - CTST
- Giải sgk Địa Lí 11 - CTST
- Giải sgk Giáo dục KTPL 11 - CTST
- Giải sgk Hoạt động trải nghiệm 11 - CTST
- Giải sgk Âm nhạc 11 - CTST