Giải Toán 11 trang 31 Tập 1 Cánh diều
Với Giải Toán 11 trang 31 Tập 1 trong Bài 3: Hàm số lượng giác và đồ thị Toán 11 Cánh diều hay nhất, chi tiết sẽ giúp học sinh lớp 11 dễ dàng làm bài tập Toán 11 trang 31.
Bài 1 trang 31 Toán 11 Tập 1: Dùng đồ thị hàm số, tìm giá trị của x trên đoạn [‒2π; 2π] để:
a) Hàm số y = sinx nhận giá trị bằng 1;
b) Hàm số y = sinx nhận giá trị bằng 0;
c) Hàm số y = cosx nhận giá trị bằng ‒1;
d) Hàm số y = cosx nhận giá trị bằng 0.
Lời giải:
a) Đồ thị hàm số y = sinx:
Quan sát đồ thị hàm số y = sinx trên đoạn [‒2π; 2π] ta thấy hàm số y = sinx nhận giá trị bằng 1 tại x.
b) Đồ thị hàm số y = sinx:
Quan sát đồ thị hàm số y = sinx trên đoạn [‒2π; 2π] ta thấy hàm số y = sinx nhận giá trị bằng 0 tại x ∈ {‒2π; ‒π; 0; π; 2π}.
c) Đồ thị hàm số y = cosx:
Quan sát đồ thị hàm số y = cosx trên đoạn [‒2π; 2π] ta thấy hàm số y = cosx nhận giá trị bằng ‒1 tại x ∈ {‒π; π}.
d) Đồ thị hàm số y = cosx:
Quan sát hai đồ thị hàm số y = cosx trên đoạn [‒2π; 2π] ta thấy hàm số y = cosx nhận giá trị bằng 0 tại x.
Bài 2 trang 31 Toán 11 Tập 1: Dùng đồ thị hàm số, tìm giá trị của x trên khoảng để:
a) Hàm số y = tanx nhận giá trị bằng ‒1;
b) Hàm số y = tanx nhận giá trị bằng 0;
c) Hàm số y = cotx nhận giá trị bằng 1;
d) Hàm số y = cotx nhận giá trị bằng 0.
Lời giải:
a) Xét đồ thị hàm số y = ‒1 và đồ thị hàm số y = tanx trên khoảng nhận giá trị bằng ‒1 tại :
Quan sát đồ thị của hai hàm số, ta thấy hàm số y = tanx nhận giá trị bằng ‒1 tại x.
b) Xét đồ thị hàm số y = tanx trên khoảng :
Quan sát hình vẽ, ta thấy hàm số y = tanx trên khoảng nhận giá trị bằng 0 tại x ∈ {0; π}.
c) Xét đồ thị hàm số y = 1 và đồ thị hàm số y = cotx trên khoảng :
Quan sát đồ thị của hai hàm số, ta thấy hàm số y = cotx trên khoảng nhận giá trị bằng 1 tại .
d) Xét đồ thị hàm số y = cotx trên khoảng :
Quan sát hình vẽ, ta thấy hàm số y = cotx trên khoảng nhận giá trị bằng 0 tại .
Bài 3 trang 31 Toán 11 Tập 1: Xét sự biến thiên của mỗi hàm số sau trên các khoảng tương ứng:
a) y = sinx trên khoảng ;
b) y = cosx trên khoảng (‒20π; ‒19π), (‒9π; ‒8π).
Lời giải:
a) Xét hàm số y = sinx:
Do nên hàm số y = sinx đồng biến trên khoảng .
Do nên hàm số y = sinx nghịch biến trên khoảng .
b) Xét hàm số y = cosx:
Do (‒20π; ‒19π) = (0 ‒20π; π ‒ 20π) nên hàm số y = cosx nghịch biến trên khoảng (‒20π; ‒19π).
Do (‒9π; ‒8π) = (‒π – 8π; 0 ‒ 8π) nên hàm số y = cosx đồng biến trên khoảng (‒9π; ‒8π).
Bài 4 trang 31 Toán 11 Tập 1: Dùng đồ thị hàm số, hãy cho biết:
a) Với mỗi m ∈ [‒1;1], có bao nhiêu giá trị sao cho sinα = m;
b) Với mỗi m ∈ [‒1;1], có bao nhiêu giá trị α ∈ [0; π] sao cho cosα = m;
c) Với mỗi m ∈ ℝ, có bao nhiêu giá trị sao cho tanα = m;
d) Với mỗi m ∈ ℝ, có bao nhiêu giá trị α ∈ [0; π] sao cho cotα = m.
Lời giải:
a) Xét đồ thị hàm số y = m (m ∈ [‒1;1]) và đồ thị hàm số y = sinx trên :
Từ đồ thị của hai hàm số ở hình vẽ trên, ta thấy với mỗi m ∈ [‒1;1] thì hai đồ thị cắt nhau tại 1 điểm.
Vậy với mỗi m ∈ [‒1;1] sẽ có 1 giá trị sao cho sinα = m.
b) Xét đồ thị hàm số y = m (m ∈ [‒1;1]) và đồ thị hàm số y = cosx trên [0; π]:
Từ đồ thị của hai hàm số ở hình vẽ trên, ta thấy với mỗi m ∈ [‒1;1] thì hai đồ thị cắt nhau tại 1 điểm.
Vậy m ∈ [‒1;1] sẽ có 1 giá trị α ∈ [0; π] sao cho cosα = m.
c) Xét đồ thị hàm số y = m (m ∈ ℝ) và đồ thị hàm số y = tanx trên :
Từ đồ thị của hai hàm số ở hình vẽ trên, ta thấy với mỗi m ∈ ℝ thì hai đồ thị cắt nhau tại 1 điểm.
Vậy với mỗi m ∈ ℝ sẽ có 1 giá trị sao cho tanα = m.
d) Xét đồ thị hàm số y = m (m ∈ ℝ) và đồ thị hàm số y = cotx trên (0; π):
Từ đồ thị của hai hàm số ở hình vẽ trên, ta thấy với mỗi m ∈ ℝ thì hai đồ thị cắt nhau tại 1 điểm.
Vậy với mỗi m ∈ ℝ sẽ có 1 giá trị α ∈ (0; π) sao cho cotα = m.
Bài 5 trang 31 Toán 11 Tập 1: Xét tính chẵn, lẻ của các hàm số:
a) y = sinx cosx;
b) y = tanx + cotx;
c) y = sin2x.
Lời giải:
a) Xét hàm số f(x) = y = sinx cosx có tập xác định D = ℝ:
• ∀x ∈ D thì ‒x ∈ D;
• f(‒x) = sin(‒x) . cos(‒x) = ‒sinx cosx = ‒f(x).
Do đó hàm số y = sinx cosx là hàm số lẻ.
b) Xét hàm số f(x) = y = tanx + cotx có tập xác định D = R \ :
• ∀x ∈ D thì ‒x ∈ D;
• f(‒x) = tan(‒x) + cot(‒x) = (‒tanx) + (‒cotx) = ‒(tanx + cotx) = ‒f(x).
Do đó hàm số y = tanx + cotx là hàm số lẻ.
c) Xét hàm số f(x) = y = sin2x có tập xác định D = ℝ:
• ∀x ∈ D thì ‒x ∈ D;
• f(‒x) = sin2(‒x) = (‒sinx)2 = sin2x = f(x).
Do đó hàm số y = sin2x là hàm số chẵn.
Bài 6 trang 31 Toán 11 Tập 1: Một dao động điều hoà có phương trình li độ dao động là: x = Acos(ωt + φ), trong đó A, φ, ω là các hằng số (ω > 0). Khi đó, chu kì T của dao động là T = .
a) Xác định giá trị của li độ khi t = 0, , t = T.
b) Vẽ đồ thị biểu diễn li độ của dao động điều hoà trên đoạn [0; 2T] trong mỗi trường hợp sau:
A = 3 và φ = 0; A = 3 và ; A = 3 và .
Lời giải:
Từ T = ta có .
Khi đó ta có phương trình li độ là x = Acos.
a)
‒ Với A = 3 cm và φ = 0 thay vào phương trình li độ x = Acos ta có:
x = 3cos.
• t = 0 thì x = 3cos0 = 3;
• t = thì x = 3cos= 3cos = 0;
• t = thì x = 3cos = 3cos = -3
• t = thì x = 3cos = 3cos = 0;
• t = T thì x = 3cos = 3cos2 = 3
‒ Vẽ đồ thị biểu diễn li độ của dao động điều hoà x = 3cos trên đoạn [0; 2T]:
Xét hàm số x = 3cos có chu kì là T.
Ta vẽ đồ thị hàm số x = 3cos trên đoạn [0; T] theo bảng sau:
Bằng cách dịch chuyển đồ thị hàm số x = 3cos trên đoạn [0; T] song song với trục hoành sang phải theo đoạn có độ dài T, ta sẽ nhận được đồ thị hàm số x = 3cos trên đoạn [T; 2T].
Từ đó ta vẽ được đồ thị biểu diễn li độ của dao động điều hoà x = 3cos trên đoạn [0; 2T] như sau:
b)
‒ Với A = 3 cm và thay vào phương trình li độ x = Acos ta có:
x = 3cos = 3cos = 3sin
• t = 0 thì x = 3sin = 3sin0 = 0
• t = thì x = 3sin = 3sin = 3;
• t = thì x = 3sin = 3sin = 0;
• t = thì x = 3sin = 3sin = -3;
• t = T thì x = 3sin = 3sin2 = 0.
‒ Vẽ đồ thị biểu diễn li độ của dao động điều hoà x = 3sin trên đoạn [0; 2T]:
Xét hàm số x = 3sin có chu kì là T.
Ta vẽ đồ thị hàm số x = 3sin trên đoạn [0; T] theo bảng sau:
Bằng cách dịch chuyển đồ thị hàm số x = 3sin trên đoạn [0; T] song song với trục hoành sang phải theo đoạn có độ dài T, ta sẽ nhận được đồ thị hàm số x = 3sin trên đoạn [T; 2T].
Từ đó ta vẽ được đồ thị biểu diễn li độ của dao động điều hoà x = 3sin trên đoạn [0; 2T] như sau:
c)
‒ Với A = 3 cm và thay vào phương trình li độ x = Acos ta có:
x = 3cos = -3cos
= -3cos = -3sin
• t = 0 thì x = -3sin = -3sin0 = 0
• t = thì x = -3sin = -3sin = -3;
• t = thì x = -3sin = -3sin = 0;
• t = thì x = -3sin = -3sin = 3;
• t = T thì x = -3sin = -3sin2 = 0.
‒ Vẽ đồ thị biểu diễn li độ của dao động điều hoà x = -3sin trên đoạn [0; 2T]:
Đồ thị hàm số x = -3sin là hình đối xứng với đồ thị hàm số x = 3sin qua trục hoành:
Bài 7 trang 31 Toán 11 Tập 1: Trong bài toán mở đầu, hãy chỉ ra một số giá trị của x để ống đựng nước cách mặt nước 2m
Lời giải:
Để ống đựng nước cách mặt nước 2 m thì h = |y| = 2
Ta loại trường hợp vì ‒1 ≤ cos(2πx) ≤ 1 với mọi x.
Do đó ta có cos(2πx) = 0.
Ta đã biết cosα = 0 tại những giá trị .
Suy ra cos(2πx) = 0 .
Khi k = 0 thì x = (phút);
Khi k = 1 thì x = (phút);
Khi k = 2 thì x = (phút);
…
Vậy khi guồng quay được phút; phút; phút; … thì ống đựng nước cách mặt nước 2m.
Lời giải bài tập Toán 11 Bài 3: Hàm số lượng giác và đồ thị hay khác:
Xem thêm lời giải bài tập Toán lớp 11 Cánh diều hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 11 hay khác:
- Giải sgk Toán 11 Cánh diều
- Giải Chuyên đề học tập Toán 11 Cánh diều
- Giải SBT Toán 11 Cánh diều
- Giải lớp 11 Cánh diều (các môn học)
- Giải lớp 11 Kết nối tri thức (các môn học)
- Giải lớp 11 Chân trời sáng tạo (các môn học)
- Soạn văn 11 Cánh diều (hay nhất)
- Soạn văn 11 Cánh diều (ngắn nhất)
- Giải sgk Toán 11 - Cánh diều
- Giải Tiếng Anh 11 Global Success
- Giải sgk Tiếng Anh 11 Smart World
- Giải sgk Tiếng Anh 11 Friends Global
- Giải sgk Vật Lí 11 - Cánh diều
- Giải sgk Hóa học 11 - Cánh diều
- Giải sgk Sinh học 11 - Cánh diều
- Giải sgk Lịch Sử 11 - Cánh diều
- Giải sgk Địa Lí 11 - Cánh diều
- Giải sgk Giáo dục KTPL 11 - Cánh diều
- Giải sgk Tin học 11 - Cánh diều
- Giải sgk Công nghệ 11 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 11 - Cánh diều
- Giải sgk Giáo dục quốc phòng 11 - Cánh diều
- Giải sgk Âm nhạc 11 - Cánh diều