Giải Toán 11 trang 28 Tập 1 Cánh diều

Với Giải Toán 11 trang 28 Tập 1 trong Bài 3: Hàm số lượng giác và đồ thị Toán 11 Cánh diều hay nhất, chi tiết sẽ giúp học sinh lớp 11 dễ dàng làm bài tập Toán 11 trang 28.

Hoạt động 10 trang 28 Toán 11 Tập 1: Cho hàm số y = tanx.

a) Tìm giá trị y tương ứng với giá trị của x trong bảng sau:

Hoạt động 10 trang 28 Toán 11 Tập 1 | Cánh diều Giải Toán 11

b) Trong mặt phẳng toạ độ Oxy, hãy biểu diễn các điểm (x; y) trong bảng giá trị ở câu a. Bằng cách làm tương tự, lấy nhiều điểm (x; tanx) với xπ2;π2 và nối lại ta được đồ thị hàm số y = tan x trên khoảng xπ2;π2 (Hình 28).

c) Làm tương tự như trên đối với các khoảng π2;3π2,3π2;π2, …, ta có đồ thị hàm số y = tan x trên D được biểu diễn ở Hình 29.

Hoạt động 10 trang 28 Toán 11 Tập 1 | Cánh diều Giải Toán 11

Lời giải:

a) Thay từng giá trị của x vào hàm số y = tanx ta có bảng sau:

Hoạt động 10 trang 28 Toán 11 Tập 1 | Cánh diều Giải Toán 11

b) Lấy thêm một số điểm (x; tanx) với xπ2;π2 trong bảng sau và nối lại ta được đồ thị hàm số y = tanx trên khoảng xπ2;π2 (hình vẽ).

Hoạt động 10 trang 28 Toán 11 Tập 1 | Cánh diều Giải Toán 11

Hoạt động 10 trang 28 Toán 11 Tập 1 | Cánh diều Giải Toán 11

c) Làm tương tự như trên đối với các π2;3π2,3π2;π2, …, ta có đồ thị hàm số y = tanx trên D được biểu diễn ở hình vẽ sau:

Hoạt động 10 trang 28 Toán 11 Tập 1 | Cánh diều Giải Toán 11

Hoạt động 11 trang 28 Toán 11 Tập 1: Quan sát đồ thị hàm số y = tanx ở Hình 29.

Hoạt động 11 trang 28 Toán 11 Tập 1 | Cánh diều Giải Toán 11

a) Nêu tập giá trị của hàm số y = tanx.

b) Gốc toạ độ có là tâm đối xứng của đồ thị hàm số không? Từ đó kết luận tính chẵn, lẻ của hàm số y = tanx.

c) Bằng cách dịch chuyển đồ thị hàm số y = tanx trên khoảng π2;π2 song song với trục hoành sang phải theo đoạn có độ dài π, ta nhận được đồ thị hàm số y = tanx trên khoảng π2;3π2 hay không? Hàm số y = tanx có tuần hoàn hay không?

d) Tìm khoảng đồng biến, nghịch biến của hàm số y = tanx.

Lời giải:

a) Tập giá trị của hàm số y = tanx là ℝ.

b) Gốc toạ độ là tâm đối xứng của đồ thị hàm số y = tanx.

Do đó hàm số y = tanx là hàm số lẻ.

c)

‒ Bằng cách dịch chuyển đồ thị hàm số y = tanx trên khoảng π2;π2 song song với trục hoành sang phải theo đoạn có độ dài π, ta sẽ nhận được đồ thị hàm số y = tanx trên khoảng π2;3π2.

Làm tương tự như trên ta sẽ được đồ thị hàm số y = tanx trên R\π2+kπ|k.

‒ Xét hàm số f(x) = y = tanx trên D = R\π2+kπ|k, với T = π và x ∈ D ta có:

• x + π ∈ D và x – π ∈ D;

• f(x + π) = f(x)

Do đó hàm số y = tanx là hàm số tuần hoàn với chu kì T = π.

d) Quan sát đồ thị hàm số y = tanx ở Hình 29, ta thấy: đồ thị hàm số đồng biến trên mỗi khoảng 3π2;π2;π2;π2;π2;3π2;...

Ta có: 3π2;π2=π2π;π2π;

π2;3π2=π2+π;π2+π;

Do đó ta có thể viết đồ thị hàm số y = tanx đồng biến trên mỗi khoảng π2+kπ;π2+kπ với k ∈ ℤ.

Lời giải bài tập Toán 11 Bài 3: Hàm số lượng giác và đồ thị hay khác:

Xem thêm lời giải bài tập Toán lớp 11 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:


Giải bài tập lớp 11 Cánh diều khác