Bài 3 trang 99 Toán 11 Tập 2 Cánh diều

Bài 3 trang 99 Toán 11 Tập 2: Chứng minh các định lí sau:

a) Nếu hai mặt phẳng (phân biệt) cùng vuông góc với mặt phẳng thứ ba thì song song với nhau hoặc cắt nhau theo một giao tuyến vuông góc với mặt phẳng thứ ba đó;

b) Cho hai mặt phẳng song song. Nếu một mặt phẳng vuông góc với một trong hai

mặt phẳng đó thì vuông góc với mặt phẳng còn lại.

Lời giải:

a)

Bài 3 trang 99 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Giả sử ta có: (P) ⊥ (R), (Q) ⊥ (R), gọi a = (P) ∩ (R), b = (Q) ∩ (R).

Mà (P) và (Q) là hai mặt phẳng phân biệt nên a và b không trùng nhau.

Hơn nữa: a và b cùng nằm trong (R), nên xảy ra hai trường hợp:

⦁ Nếu a // b, mà a ⊂ (P), b ⊂ (Q) thì suy ra (P) // (Q).

⦁ Nếu a cắt b, mà a ⊂ (P) và b ⊂ (Q), thì ta gọi c = (P) ∩ (Q).

Do (P) ⊥ (R), (Q) ⊥ (R) và c = (P) ∩ (Q) nên suy ra c ⊥ (R).

b)

Bài 3 trang 99 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Giả sử có ba mặt phẳng (P), (Q), (R) thỏa mãn (P) // (Q) và (R) ⊥ (P). Ta cần chứng minh (R) ⊥ (Q).

Gọi a = (P) ∩ (R), lấy d ⊂ (R) sao cho a ⊥ d.

Ta có: (R) ⊥ (P), a = (R) ∩ (P), d ⊂ (R) và a ⊥ d, suy ra d ⊥ (P).

Mà (P) // (Q), d ⊂ (R) nên d ⊥ (Q).

Suy ra (Q) ⊥ (R).

Lời giải bài tập Toán 11 Bài 4: Hai mặt phẳng vuông góc hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 11 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:


Giải bài tập lớp 11 Cánh diều khác