Giải Toán 10 trang 19 Tập 2 Kết nối tri thức

Với Giải Toán 10 trang 19 Tập 2 trong Bài 17: Dấu của tam thức bậc hai Toán 10 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh lớp 10 dễ dàng làm bài tập Toán 10 trang 19.

Mở đầu trang 19 Toán 10 Tập 2: Xét bài toán rào vườn ở Bài 16, nhưng ta trả lời câu hỏi: Hai cột góc hàng rào (H.6.8) cần phải cắm cách bờ tường bao nhiêu mét để mảnh đất được rào chắn có diện tích không nhỏ hơn 48 m2?

Lời giải:

Theo Bài 16, diện tích mảnh đất được rào chắn là S(x) = – 2x2+ 20x  (m2). 

Vì mảnh đất được rào chắn có diện tích không nhỏ hơn 48 m2 nghĩa là S(x) phải lớn hơn hoặc bằng 48. 

Khi đó: – 2x2 + 20x ≥ 48 ⇔ 2x2 – 20x + 48 ≤ 0 (1). 

Ta cần giải bất phương trình (1). 

Sau bài học này ta sẽ giải được bất phương trình (1) như sau: 

Tam thức bậc hai f(x) = 2x2 – 20x + 48 có hai nghiệm x1 = 4; x2 = 6 và hệ số a = 2 > 0. Từ đó suy ra tập nghiệm của bất phương trình (1) là đoạn [4; 6]. Như vậy khoảng cách từ điểm cắm cột đến bờ tường phải lớn hơn hoặc bằng 4 m và nhỏ hơn hoặc bằng 6 m thì mảnh đất rào chắn của bác Việt sẽ có diện tích không nhỏ hơn 48 m2.  

HĐ1 trang 19 Toán 10 Tập 2: Hãy chỉ ra một vài đặc điểm chung của các biểu thức dưới đây: 

A = 0,5x2;

B = 1 – x2;             

C = x2 + x + 1;                 

D = (1 – x)(2x + 1).

Lời giải:

Ta có: A = 0,5x2 = 0,5x2 + 0x + 0; 

B = 1 – x2 = – x2 + 0x + 1;

C = x2 + x + 1;

D = (1 – x)(2x + 1) = 2x + 1 – 2x2 – x = – 2x2 + x + 1. 

Các biểu thức trên đều có dạng ax2 + bx + c, trong đó a, b, c là các số thực và a ≠ 0. 

Luyện tập 1 trang 19 Toán 10 Tập 2: Hãy cho biết biểu thức nào sau đây là tam thức bậc hai. 

A = 3x + 2 + 1; 

B = – 5x4 + 3x2 + 4; 

C = 23x2+7x4

D = 1x2+21x+3

Lời giải:

Trong các biểu thức A, B, C, D trên, chỉ có biểu thức C = 23x2+7x4 là tam thức bậc hai vì nó có dạng ax2 + bx + c, trong đó a = 23, b = 7, c = – 4 là các số thực và a ≠ 0. 

HĐ2 trang 19 Toán 10 Tập 2: Cho hàm số bậc hai y = f(x) = x2 – 4x + 3. 

a) Xác định hệ số a. Tính f(0), f(1), f(2), f(3), f(4) và nhận xét về dấu của chúng so với dấu của hệ số a. 

b) Cho đồ thị hàm số y = f(x) (H.6.17). Xét trên từng khoảng (– ∞; 1), (1; 3), (3; +∞), đồ thị nằm phía trên hay nằm phía dưới trục Ox?

Cho hàm số bậc hai y = f(x) = x^2 – 4x +

c) Nhận xét về dấu của f(x) và dấu của hệ số a trên từng khoảng đó. 

Lời giải:

a) Hàm số bậc hai y = f(x) = x2 – 4x + 3. 

Hệ số a = 1 > 0. 

Ta có: f(0) = 02 – 4 . 0 + 3 = 3 > 0, f(0) cùng dấu với hệ số a. 

f(1) = 12 – 4 . 1 + 3 = 0, f(1) không mang dấu.

f(2) = 22 – 4 . 2 + 3 = – 1 < 0, f(2) trái dấu với hệ số a.

f(3) = 32 – 4 . 3 + 3 = 0, f(3) không mang dấu. 

f(4) = 42 – 4 . 4 + 3 = 3 > 0, f(4) cùng dấu với hệ số a.

b) Quan sát đồ thị H.6.17, ta thấy:

+ Trên các khoảng (– ∞; 1) và (3; +∞), đồ thị hàm số nằm hoàn toàn phía trên trục Ox. 

+ Trên khoảng (1; 3), đồ thị hàm số nằm hoàn toàn phía dưới trục Ox.

c) Khi đồ thị hàm số nằm hoàn toàn trên trục Ox thì f(x) > 0, ngược lại khi đồ thị hàm số nằm hoàn toàn phía dưới trục Ox thì f(x) < 0. 

Hệ số a = 1 > 0. 

Vậy trên các khoảng (– ∞; 1) và (3; +∞), f(x) cùng dấu với hệ số a; trên khoảng (1; 3), f(x) trái dấu với hệ số a. 

Lời giải bài tập Toán 10 Bài 17: Dấu của tam thức bậc hai hay khác:

Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Kết nối tri thức khác