HĐ4 trang 74 Toán 10 Tập 2 - Kết nối tri thức

HĐ4 trang 74 Toán 10 Tập 2: Tương tự như HĐ3, sau khi khai triển (a + b)5, ta thu được một tổng gồm 25 đơn thức có dạng x . y . z . t . u, trong đó mỗi kí hiệu x, y, z, t, u là a hoặc b. Chẳng hạn, nếu x, z là a, còn y, t, u là b thì ta có đơn thức a . b . a . b . b, thu gọn là a2b3. Để có đơn thức này, thì trong 5 nhân tử x, y, z, t, u có 3 nhân tử là b, 2 nhân tử còn lại là a. Khi đó số đơn thức đồng dạng với a2b3 trong tổng là C53.

Lập luận tương tự như trên, dùng kiến thức về tổ hợp, hãy cho biết, trong tổng nhận được nêu trên có bao nhiêu đơn thức đồng dạng với mỗi đơn thức thu gọn sau:

• a5;

• a4b;

• a3b2;

• a2b3;

• ab4;

• b5.

Lời giải:

+ Để có đơn thức a5 thì phải có 5 nhân tử a, khi đó số đơn thức đồng dạng với atrong tổng là: C50= 1, hay có 1 đơn thức a5.

+ Để có đơn thức a4b thì phải có 4 nhân tử a, 1 nhân tử b, khi đó số đơn thức đồng dạng với a4b trong tổng là: C51= 5.

+ Để có đơn thức a3b2 thì phải có 3 nhân tử a, 2 nhân tử b, khi đó số đơn thức đồng dạng với a3b2 trong tổng là: C52= 10.

+ Để có đơn thức a2b3 thì phải có 2 nhân tử a, 3 nhân tử b, khi đó số đơn thức đồng dạng với a2b3 trong tổng là: C53= 10.

+ Để có đơn thức ab4 thì phải có 1 nhân tử a, 4 nhân tử b, khi đó số đơn thức đồng dạng với ab4 là: C54= 5.

+ Để có đơn thức b5 thì phải có 5 nhân tử b, khi đó số đơn thức đồng dạng với btrong tổng là: C55= 1.

Lời giải bài tập Toán 10 Bài 25: Nhị thức Newton hay, chi tiết khác:

Các bài học để học tốt Toán 10 Bài 25: Nhị thức Newton:

Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Kết nối tri thức khác