Giải Toán 10 trang 56 Tập 1 Chân trời sáng tạo

Với Giải Toán 10 trang 56 Tập 1 trong Bài 2: Hàm số bậc hai Toán 10 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh lớp 10 dễ dàng làm bài tập Toán 10 trang 56.

Bài 1 trang 56 Toán lớp 10 Tập 1: Hàm số nào sau đây là hàm số bậc hai?

a) y = 9x2 + 5x + 4;

b) y = 3x3 + 2x + 1;

c) y = -4(x + 2)3 + 2(2x3 + 1) + 5;

d) y = 5x2 +  x + 2.

Lời giải:

a) y = 9x2 + 5x + 4 là hàm số bậc hai với a = 9, b = 5 và c = 4.

b) y = 3x3 + 2x + 1 không là hàm số bậc hai vì bậc cao nhất là bậc ba.

c) y = -4(x + 2)3 + 2(2x3 + 1) + 5

⇔ y = -4(x3 + 3x2.2 + 3.x.22 + 23) + 4x3 + 2 + 5

⇔ y = -4x3 – 24x2 – 48x – 32 + 4x3 + 2 + 5

⇔ y = – 24x2 – 48x – 25

Là hàm số bậc hai với a = -24, b = -48, c = -25.

d) y = 5x2x  + 2 không là hàm số bậc hai vì có chứa hạng tử x.

Bài 2 trang 56 Toán lớp 10 Tập 1: Tìm điều kiện của m để mỗi hàm số sau là hàm số bậc hai.

a) y = mx4 + (m + 1)x2 + x + 3;

b) y = (m – 2)x3 + (m – 1)x2 + 5.

Lời giải:

a) Để hàm số y = mx4 + (m + 1)x2 + x + 3 là hàm bậc hai thì hệ số của x4 phải bằng 0 và hệ số của x2 phải khác không tức là: m=0m+10m=0m1m=0

Vậy với m = 0 thì hàm số đã cho là hàm số bậc hai.

b) Để hàm số y = (m – 2)x3 + (m – 1)x2 + 5 là hàm số bậc hai thì hệ số của x3 phải bằng 0 và hệ số của x2 phải khác không tức là: m2=0m10m=2m1m=2

Vậy với m = 2 thì hàm số đã cho là hàm số bậc hai.

Bài 3 trang 56 Toán lớp 10 Tập 1: Lập bảng biến thiên của hàm số y = x2 + 2x + 3. Hàm số này có giá trị lớn nhất hay nhỏ nhất? Tìm giá trị đó.

Lời giải:

Xét hàm số bậc hai: y = x2 + 2x + 3 có a = 1, b = 2 và c = 3.

Đỉnh S có tọa độ xsb2a=22.1=1 , ys = (-1)2 + 2.(-1) + 3 = 2. Hay S(-1; 2).

Vì hàm số bậc hai có a = 1 > 0  nên ta có bảng biến thiên sau:

Lập bảng biến thiên của hàm số y = x^2 + 2x + 3. Hàm số này có giá trị

Hàm số có giá trị nhỏ nhất bằng 2 khi x = -1.

Bài 4 trang 56 Toán lớp 10 Tập 1Cho hàm số bậc hai y = f(x) = ax2 + bx + c có f(0) = 1, f(1) = 2, f(2) = 5.

a) Hãy xác định giá trị của các hệ số a, b, c.

b) Xác định tập giá trị và khoảng biến thiên của hàm số.

Lời giải:

Ta có:

f(0) = a.02 + b.0 + c = 1 ⇔ c = 1.

f(1) = a.12 + b.1 + c = 2 ⇔  a + b + c = 2.

f(2) = a.22 + b.2 + c = 5 ⇔  4a + 2b + c = 5.

Khi đó, ta có hệ phương trình: 

c=1a+b+c=24a+2b+c=5c=1a+b=14a+2b=4c=1a+b=12a+b=2c=1a=1b=0

Vậy a = 1, b = 0 và c = 1.

b) Với a = 1, b = 0 và c = 1 thì ta có hàm số: y = x2 + 1.

Xét hàm số bậc hai: y = x2 + 1, có:

Đỉnh S có tọa độ xs = b2a=02.1=0, ys = 02 + 1 = 1. Hay S(0; 1).

Vì hàm số bậc hai có a = 1 > 0  nên ta có bảng biến thiên sau:

Cho hàm số bậc hai y = f(x) = ax^2 + bx + c có f(0) = 1, f(1) = 2, f(2) = 5

Dựa vào bảng biến thiên ta có:

Hàm số có giá trị nhỏ nhất bằng 1 khi x = 0. Do đó tập giá trị của hàm số là [1; +∞).

Hàm số nghịch biến trên khoảng (-∞;0) và đồng biến trên khoảng (0; +∞).

Bài 5 trang 56 Toán lớp 10 Tập 1: Cho hàm số y = 2x2 + x + m. Hãy xác định giá trị của m để hàm số đạt giá trị nhỏ nhất bằng 5.

Lời giải:

Xét hàm số y = 2x2 + x + m có a = 2, b = 1 và c = m.

Điểm đỉnh S có tọa độ xS = b2a=12.2=14, yS2.142+14+m=m18

Hàm số có a = 2 > 0 nên giá trị nhỏ nhất của hàm số là m – 18

Mà giá trị nhỏ nhất bằng 5 nên m – 18 = 5 ⇔ m = 418

Vậy với m =  418thì giá trị nhỏ nhất của hàm số là 5.

Bài 6 trang 56 Toán lớp 10 Tập 1: Vẽ đồ thị các hàm số sau:

a) y = 2x2 + 4x – 1;

b) y = -x2 + 2x + 3;

c) y = -3x2 + 6x;

d) y = 2x2 – 5.

Lời giải:

a) Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai y = f(x) = 2x2 + 4x – 1 là một parabol (P):

- Có đỉnh S với hoành độ xS = -1, tung độ yS = -3;

- Có trục đối xứng là đường thẳng x = -1 (đường thẳng này đi qua đỉnh S và song song với trục Oy);

- Bề lõm quay lên trên vì a > 0;

- Cắt trục tung tại điểm có tung độ bằng -1, tức là đồ thị đi qua điểm có tọa độ (0; -1).

Ngoài ra, phương trình 2x2 + 4x – 1 = 0 có hai nghiệm phân biệt x12+62  và x2262  nên đồ thị hàm số cắt trục hoành tại hai điểm có tọa độ 2+62;0  và 262;0.

Ta được đồ thị hàm số như sau:

Vẽ đồ thị các hàm số sau: y = 2x^2 + 4x – 1

b) Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai y = f(x) = -x2 + 2x + 3 là một parabol (P):

- Có đỉnh S với hoành độ xS = 1, tung độ yS = 4;

- Có trục đối xứng là đường thẳng x = 1 (đường thẳng này đi qua đỉnh S và song song với trục Oy);

- Bề lõm quay xuống dưới vì a < 0;

- Cắt trục tung tại điểm có tung độ bằng 3, tức là đồ thị đi qua điểm có tọa độ (0; 3).

Ngoài ra, phương trình -x2 + 2x + 3 = 0 có hai nghiệm phân biệt x1 = 3 và x2 = -1 nên đồ thị hàm số cắt trục hoành tại hai điểm có tọa độ (3; 0) và (-1; 0).

Ta được đồ thị hàm số như sau:

Vẽ đồ thị các hàm số sau: y = 2x^2 + 4x – 1

c) Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai y = f(x) = -3x2 + 6x là một parabol (P):

- Có đỉnh S với hoành độ xS = 1, tung độ yS = 3;

- Có trục đối xứng là đường thẳng x = 1 (đường thẳng này đi qua đỉnh S và song song với trục Oy);

- Bề lõm quay xuống dưới vì a < 0;

- Cắt trục tung tại điểm có tung độ bằng 0, tức là đồ thị đi qua điểm có tọa độ (0; 0).

Ngoài ra, phương trình -3x2 + 6x = 0 có hai nghiệm phân biệt x1 = 0 và x2 = 2 nên đồ thị hàm số cắt trục hoành tại hai điểm có tọa độ (0; 0) và (2; 0).

Ta được đồ thị hàm số như sau:

Vẽ đồ thị các hàm số sau: y = 2x^2 + 4x – 1

d) Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai y = f(x) = 2x2 – 5 là một parabol (P):

- Có đỉnh S với hoành độ xS = 0, tung độ yS = -5;

- Có trục đối xứng là đường thẳng x = 0 (đường thẳng này đi qua đỉnh S và song song với trục Oy);

- Bề lõm quay lên trên vì a > 0;

- Cắt trục tung tại điểm có tung độ bằng -5, tức là đồ thị đi qua điểm có tọa độ (0; -5).

Ngoài ra, phương trình 2x2 – 5 = 0 có hai nghiệm phân biệt x1 =  52 và x2 = 52 nên đồ thị hàm số cắt trục hoành tại hai điểm có tọa độ (52; 0) và (52; 0).

Ta được đồ thị hàm số như sau:

Vẽ đồ thị các hàm số sau: y = 2x^2 + 4x – 1

Bài 7 trang 56 Toán lớp 10 Tập 1: Hãy xác định đúng đồ thị của mỗi hàm số sau trên Hình 12.

(P1): y = - 2x2 – 4x + 2;

(P2): y = 3x2 – 6x + 5;

(P3): y = 4x2 – 8x + 7;

(P4): y = -3x2 – 6x + 1.

Hãy xác định đúng đồ thị của mỗi hàm số sau trên Hình 12

Lời giải:

+) (P1): y = - 2x2 – 4x + 2

Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai y = - 2x2 – 4x + 2 là một parabol (P1):

- Có đỉnh S với hoành độ xS = -1, tung độ yS = 4;

- Có trục đối xứng là đường thẳng x = -1 (đường thẳng này đi qua đỉnh S và song song với trục Oy);

- Bề lõm quay xuống dưới vì a < 0;

- Cắt trục tung tại điểm có tung độ bằng 2, tức là đồ thị đi qua điểm có tọa độ (0; 2).

Quan sát trên hình vẽ, ta thấy đồ thị tương thích với hàm số (P1) là đường cong màu xanh lá cây.

+) (P2): y = 3x2 – 6x + 5;

Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai y = 3x2 – 6x + 5 là một parabol (P2):

- Có đỉnh S với hoành độ xS = 1, tung độ yS = 2;

- Có trục đối xứng là đường thẳng x = 1 (đường thẳng này đi qua đỉnh S và song song với trục Oy);

- Bề lõm quay lên trên vì a > 0;

- Cắt trục tung tại điểm có tung độ bằng 5, tức là đồ thị đi qua điểm có tọa độ (0; 5).

Quan sát trên hình vẽ, ta thấy đồ thị tương thích với hàm số (P2) là đường cong màu xanh dương.

+) (P3): y = 4x2 – 8x + 7:

Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai y = 4x2 – 8x + 7 là một parabol (P3):

- Có đỉnh S với hoành độ xS = 1, tung độ yS = 3;

- Có trục đối xứng là đường thẳng x = 1 (đường thẳng này đi qua đỉnh S và song song với trục Oy);

- Bề lõm quay lên trên vì a > 0;

- Cắt trục tung tại điểm có tung độ bằng 7, tức là đồ thị đi qua điểm có tọa độ (0; 7).

Quan sát trên hình vẽ, ta thấy đồ thị tương thích với hàm số (P3) là đường cong màu đỏ.

+) (P4): y = -3x2 – 6x + 1:

Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai y = -3x2 – 6x – 1 là một parabol (P4):

- Có đỉnh S với hoành độ xS = -1, tung độ yS = 2;

- Có trục đối xứng là đường thẳng x = -1 (đường thẳng này đi qua đỉnh S và song song với trục Oy);

- Bề lõm quay xuống dưới vì a < 0;

- Cắt trục tung tại điểm có tung độ bằng 1, tức là đồ thị đi qua điểm có tọa độ (0; -1).

Quan sát trên hình vẽ, ta thấy đồ thị tương thích với hàm số (P4) là đường cong màu cam.

Lời giải bài tập Toán 10 Bài 2: Hàm số bậc hai hay khác:

Xem thêm lời giải bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Chân trời sáng tạo khác