Luyện tập 2 trang 41 Toán 10 Tập 1 Cánh diều

Luyện tập 2 trang 41 Toán lớp 10 Tập 1: Vẽ đồ thị mỗi hàm số bậc hai sau:

a) y = x2 – 4x – 3;

b) y = x2 + 2x + 1;

c) y = – x2 – 2.

Lời giải:

a) y = x2 – 4x – 3

Ta có: a = 1, b = – 4, c = – 3, ∆ = (– 4)2 – 4 . 1 . (– 3) = 28.

- Tọa độ đỉnh I(2; – 7).

- Trục đối xứng x = 2.

- Giao điểm của parabol với trục tung là A(0; – 3).

- Giao điểm của parabol với trục hoành là B(27; 0) và C(2+7; 0).

- Điểm đối xứng với điểm A(0; – 3) qua trục đối xứng x = 2 là D(4; – 3).

- Do a > 0 nên bề lõm của đồ thị hướng lên trên.

Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số y = x2 – 4x – 3 như hình dưới.

Luyện tập 2 trang 41 Toán 10 Tập 1 Cánh diều | Giải Toán 10

b) y = x2 + 2x + 1

Ta có: a = 1, b = 2, c = 1, ∆ = 22 – 4 . 1 . 1 = 0.

- Tọa độ đỉnh I(– 1; 0).

- Trục đối xứng x = – 1.

- Giao điểm của parabol với trục tung là A(0; 1).

- Giao điểm của parabol với trục hoành là chính là đỉnh I. 

- Điểm đối xứng với điểm A(0; 1) qua trục đối xứng x = – 1 là B(– 2; 0).

- Lấy điểm C(1; 4) thuộc đồ thị hàm số, điểm đối xứng của C qua trục đối xứng x = – 1 là D(– 3; 4).

- Do a > 0 nên bề lõm của đồ thị hướng lên trên.

Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số y = x2 + 2x + 1 như hình dưới.

Luyện tập 2 trang 41 Toán 10 Tập 1 Cánh diều | Giải Toán 10

c) y = – x2 – 2

Ta có:  a = – 1, b = 0, c = – 2, ∆ = 02 – 4 . (– 1) . (– 2) = – 8.

- Tọa độ đỉnh I(0; – 2).

- Trục đối xứng x = 0 chính là trục tung.

- Giao điểm của parabol với trục tung là đỉnh của parabol.

- Parabol không có giao điểm với trục hoành.

- Khi x = 1 thì y = – 3 nên đồ thị hàm số đi qua điểm A(1; – 3). Điểm đối xứng với A qua trục tung là B(– 1; – 3).

- Khi x = 2 thì y = – 6 nên đồ thị hàm số đi qua điểm F(2; – 6). Điểm đối xứng với điểm F qua trục tung là G(– 2; – 6).

- Do a < 0 nên bề lõm của đồ thị hướng xuống dưới.

 Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số y = – x2 – 2 như hình dưới.

Luyện tập 2 trang 41 Toán 10 Tập 1 Cánh diều | Giải Toán 10

Lời giải bài tập Toán 10 Bài 2: Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng hay, chi tiết khác:

Các bài học để học tốt Toán 10 Bài 2: Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng:

Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Cánh diều khác