Bài 2 trang 43 Toán 10 Tập 1 Cánh diều

Bài 2 trang 43 Toán lớp 10 Tập 1: Xác định parabol y = ax2 + bx + 4 trong mỗi trường hợp sau:

a) Đi qua điểm M(1; 12) và N(– 3; 4); 

b) Có đỉnh là I(– 3; – 5).

Lời giải:

a) Parabol đã cho đi qua điểm M(1; 12), thay x = 1, y = 12 vào hàm số ta được: 

12 = a + b + 4 ⇔ a = 8 – b     (1)

Parabol đã cho đi qua điểm N(– 3; 4), thay x = – 3, y = 4 vào hàm số ta được: 

4 = 9a – 3b + 4 ⇔ 3a – b = 0    (2)

Thay (1) vào (2) ta có: 3. (8 – b) – b = 0 ⇔ 24 – 4b = 0 ⇔ b = 6. 

Suy ra a = 8 – b = 8 – 6 = 2. 

Vậy y = 2x2 + 6x + 4. 

b)  Parabol có đỉnh là I(– 3; – 5)

b2a=3       3a.32+b.3+4=5    4

Từ (3) suy ra: b = 6a, thay vào (4) ta được: 9a – 3 . 6a + 4 = – 5 ⇔ a = 1

Suy ra: b = 6a = 6 . 1 = 6. 

Vậy y = x2 + 6x + 4.  

Lời giải bài tập Toán 10 Bài 2: Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng hay, chi tiết khác:

Các bài học để học tốt Toán 10 Bài 2: Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng:

Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Cánh diều khác