Giải Toán 10 trang 90 Tập 2 Cánh diều

Với Giải Toán 10 trang 90 Tập 2 trong Bài 5: Phương trình đường tròn Toán 10 Cánh diều hay nhất, chi tiết sẽ giúp học sinh lớp 10 dễ dàng làm bài tập Toán 10 trang 90.

Hoạt động 4 trang 90 Toán lớp 10 Tập 2: Cho điểm M0(x0; y0) nằm trên đường tròn (C) tâm I(a; b) bán kính R.

Gọi ∆ là tiếp tuyến tại điểm M0(x0; y0) thuộc đường tròn (Hình 44).

Cho điểm M0(x0; y0) nằm trên đường tròn (C) tâm I(a; b) bán kính R

a) Chứng tỏ rằng IM0 là vectơ pháp tuyến của đường thẳng ∆.

b) Tính tọa độ của IM0.

c) Lập phương trình tổng quát của đường thẳng ∆.

Lời giải:

a) Vì đường thẳng ∆ là tiếp tuyến của đường tròn (C) có tâm I tại điểm M0 nên IM0 vuông góc với ∆ tại M0 (tiếp tuyến của đường tròn vuông góc với bán kính đi qua tiếp điểm).

Do đó, vectơ IM0 có giá là đường thẳng IM0 vuông góc với đường thẳng ∆.

Vậy vectơ IM0 là vectơ pháp tuyến của đường thẳng ∆.

b) Ta có: IM0=x0a; y0b.

c) Đường thẳng ∆ đi qua điểm M0(x0; y0) và nhận IM0 làm vectơ pháp tuyến.

Do đó, phương trình tổng quát của đường thẳng ∆ là(x0 – a)(x – x0) + (y0 – b)(y – y0) = 0.

Luyện tập 4 trang 90 Toán lớp 10 Tập 2: Lập phương trình tiếp tuyến tại điểm M0(– 1; – 4) thuộc đường tròn (x – 3)2 + (y + 7)2 = 25.

Lời giải:

Đường tròn có tâm I(3; – 7).

Phương trình tiếp tuyến tại điểm M0(– 1; – 4) thuộc đường tròn (x – 3)2 + (y + 7)2 = 25 là

(– 1 – 3)(x + 1) + (– 4 + 7)(y + 4) = 0

⇔ – 4x – 4 + 3y + 12 = 0 ⇔ 4x – 3y – 8 = 0.

Lời giải bài tập Toán 10 Bài 5: Phương trình đường tròn hay khác:

Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Cánh diều khác