Giải Toán 10 trang 87 Tập 2 Cánh diều

Với Giải Toán 10 trang 87 Tập 2 trong Bài 5: Phương trình đường tròn Toán 10 Cánh diều hay nhất, chi tiết sẽ giúp học sinh lớp 10 dễ dàng làm bài tập Toán 10 trang 87.

Câu hỏi khởi động trang 87 Toán lớp 10 Tập 2: Ở một số công viên, người ta dựng vòng quay có bán kính rất lớn đặt theo phương thẳng đứng như Hình 42. Khi vòng quay hoạt động, một người ngồi trong cabin sẽ chuyển động theo đường tròn.

Ở một số công viên, người ta dựng vòng quay có bán kính rất lớn

Làm thế nào để xác định được phương trình quỹ đạo chuyển động của người đó?

Lời giải:

Để xác định được phương trình quỹ đạo chuyển động của người đó, ta cần lập được phương trình đường tròn chuyển động của vòng quay, để lập phương trình đường tròn này, ta cần biết tọa độ tâm và bán kính của đường tròn.

Hoạt động 1 trang 87 Toán lớp 10 Tập 2:

a) Tính khoảng cách từ gốc tọa độ O(0; 0) đến điểm M(3; 4) trong mặt phẳng tọa độ Oxy.

b) Cho hai điểm I(a; b) và M(x; y) trong mặt phẳng tọa độ Oxy. Nêu công thức tính độ dài đoạn thẳng IM.

Lời giải:

a) Khoảng cách từ gốc tọa độ O đến M là OM = 302+402=5.

b) Công thức tính độ dài đoạn thẳng IM là IM = xa2+yb2.

Hoạt động 2 trang 87 Toán lớp 10 Tập 2: Trong mặt phẳng tọa độ Oxy, nêu mối liên hệ giữa x và y để:

a) Điểm M(x; y) nằm trên đường tròn tâm O(0; 0) bán kính 5.

b) Điểm M(x; y) nằm trên đường tròn (C) tâm I(a; b) bán kính R.

Lời giải:

a) Điểm M(x; y) nằm trên đường tròn tâm O bán kính 5 khi và chỉ khi OM = 5 ⇔ OM2 = 52x02+y022=25⇔ x2 + y2 = 25.

b) Điểm M(x; y) nằm trên đường tròn (C) tâm I(a; b) bán kính R khi và chỉ khi IM = R

⇔ IM2 = R2 xa2+yb22=R2⇔ (x – a)2 + (y – b)2 = R2.

Lời giải bài tập Toán 10 Bài 5: Phương trình đường tròn hay khác:

Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Cánh diều khác