Giải Toán 10 trang 41 Tập 1 Cánh diều

Với Giải Toán 10 trang 41 Tập 1 trong Bài 2: Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng Toán 10 Cánh diều hay nhất, chi tiết sẽ giúp học sinh lớp 10 dễ dàng làm bài tập Toán 10 trang 41.

Luyện tập 2 trang 41 Toán lớp 10 Tập 1: Vẽ đồ thị mỗi hàm số bậc hai sau:

a) y = x2 – 4x – 3;

b) y = x2 + 2x + 1;

c) y = – x2 – 2.

Lời giải:

a) y = x2 – 4x – 3

Ta có: a = 1, b = – 4, c = – 3, ∆ = (– 4)2 – 4 . 1 . (– 3) = 28.

- Tọa độ đỉnh I(2; – 7).

- Trục đối xứng x = 2.

- Giao điểm của parabol với trục tung là A(0; – 3).

- Giao điểm của parabol với trục hoành là B(27; 0) và C(2+7; 0).

- Điểm đối xứng với điểm A(0; – 3) qua trục đối xứng x = 2 là D(4; – 3).

- Do a > 0 nên bề lõm của đồ thị hướng lên trên.

Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số y = x2 – 4x – 3 như hình dưới.

Vẽ đồ thị mỗi hàm số bậc hai sau: y = x^2 – 4x – 3; y = x^2 + 2x + 1; y = – x^2 – 2

b) y = x2 + 2x + 1

Ta có: a = 1, b = 2, c = 1, ∆ = 22 – 4 . 1 . 1 = 0.

- Tọa độ đỉnh I(– 1; 0).

- Trục đối xứng x = – 1.

- Giao điểm của parabol với trục tung là A(0; 1).

- Giao điểm của parabol với trục hoành là chính là đỉnh I. 

- Điểm đối xứng với điểm A(0; 1) qua trục đối xứng x = – 1 là B(– 2; 0).

- Lấy điểm C(1; 4) thuộc đồ thị hàm số, điểm đối xứng của C qua trục đối xứng x = – 1 là D(– 3; 4).

- Do a > 0 nên bề lõm của đồ thị hướng lên trên.

Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số y = x2 + 2x + 1 như hình dưới.

Vẽ đồ thị mỗi hàm số bậc hai sau: y = x^2 – 4x – 3; y = x^2 + 2x + 1; y = – x^2 – 2

c) y = – x2 – 2

Ta có:  a = – 1, b = 0, c = – 2, ∆ = 02 – 4 . (– 1) . (– 2) = – 8.

- Tọa độ đỉnh I(0; – 2).

- Trục đối xứng x = 0 chính là trục tung.

- Giao điểm của parabol với trục tung là đỉnh của parabol.

- Parabol không có giao điểm với trục hoành.

- Khi x = 1 thì y = – 3 nên đồ thị hàm số đi qua điểm A(1; – 3). Điểm đối xứng với A qua trục tung là B(– 1; – 3).

- Khi x = 2 thì y = – 6 nên đồ thị hàm số đi qua điểm F(2; – 6). Điểm đối xứng với điểm F qua trục tung là G(– 2; – 6).

- Do a < 0 nên bề lõm của đồ thị hướng xuống dưới.

 Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số y = – x2 – 2 như hình dưới.

Vẽ đồ thị mỗi hàm số bậc hai sau: y = x^2 – 4x – 3; y = x^2 + 2x + 1; y = – x^2 – 2

Hoạt động 4 trang 41 Toán lớp 10 Tập 1:

a) Quan sát đồ thị hàm số bậc hai y = x+ 2x – 3 trong Hình 11. Xác định khoảng đồng biến, khoảng nghịch biến của hàm số và lập bảng biến thiên của hàm số đó. 

b) Quan sát đồ thị hàm số bậc hai y = – x2 + 2x + 3 trong Hình 12. Xác định khoảng đồng biến, khoảng nghịch biến của hàm số và lập bảng biến thiên của hàm số đó. 

Lời giải:

a) Quan sát Hình 11.

Quan sát đồ thị hàm số bậc hai y = x^2 + 2x – 3 trong Hình 11. Xác định khoảng đồng biến

+ Đồ thị hàm số y = x2 + 2x – 3 đi xuống trong khoảng (– ∞; – 1) nên hàm số nghịch biến trên khoảng (– ∞; – 1).

+ Đồ thị hàm số trên đi lên trong khoảng (– 1; + ∞) nên hàm số đồng biến trên khoảng (– 1; + ∞). 

Ta có bảng biến thiên 

Quan sát đồ thị hàm số bậc hai y = x^2 + 2x – 3 trong Hình 11. Xác định khoảng đồng biến

b) Quan sát Hình 12. 

Quan sát đồ thị hàm số bậc hai y = x^2 + 2x – 3 trong Hình 11. Xác định khoảng đồng biến

+ Đồ thị hàm số y = – x2 + 2x + 3 đi lên trong khoảng (– ∞; 1) nên hàm số đồng biến trên khoảng (– ∞; 1).

+ Đồ thị hàm số trên đi xuống trong khoảng (1; + ∞) nên hàm số nghịch biến trên khoảng (1; + ∞). 

Ta có bảng biến thiên 

Quan sát đồ thị hàm số bậc hai y = x^2 + 2x – 3 trong Hình 11. Xác định khoảng đồng biến

Lời giải bài tập Toán 10 Bài 2: Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng hay khác:

Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Cánh diều khác