Giải Toán 10 trang 40 Tập 1 Cánh diều

Với Giải Toán 10 trang 40 Tập 1 trong Bài 2: Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng Toán 10 Cánh diều hay nhất, chi tiết sẽ giúp học sinh lớp 10 dễ dàng làm bài tập Toán 10 trang 40.

Hoạt động 3 trang 40 Toán lớp 10 Tập 1: Cho hàm số y = – x2 + 2x + 3.

a) Tìm tọa độ 5 điểm thuộc đồ thị hàm số trên có hoành độ lần lượt là – 1, 0, 1, 2, 3 rồi vẽ chúng trong mặt phẳng tọa độ Oxy. 

b) Vẽ đường cong đi qua 5 điểm trên. Đường cong đó cũng là đường parabol và là đồ thị của hàm số y = – x2 + 2x + 3 (Hình 12). 

c) Cho biết tọa độ của điểm cao nhất và phương trình trục đối xứng của parabol đó. Đồ thị hàm số đó quay bề lõm lên trên hay xuống dưới? 

Lời giải:

a) Ta có: y = – x2 + 2x + 3. 

Với x = – 1 thì y = – (– 1)2 + 2 . (– 1) + 3 = 0.

Với x = 0 thì y = – 02 + 2 . 0 + 3 = 3. 

Với x = 1 thì y = – 12 + 2 . 1 + 3 = 4. 

Với x = 2 thì y = – 22 + 2 . 2 + 3 = 3.

Với x = 3 thì y = – 32 + 2 . 3 + 3 = 0. 

Vậy tọa độ các điểm cần tìm là: (– 1; 0), (0; 3), (1; 4), (2; 3), (3; 0) và được vẽ lên mặt phẳng tọa độ như sau: 

Cho hàm số y = – x^2 + 2x + 3. Tìm tọa độ 5 điểm thuộc đồ thị hàm số

b) Vẽ đường cong đi qua 5 điểm trên: 

Cho hàm số y = – x^2 + 2x + 3. Tìm tọa độ 5 điểm thuộc đồ thị hàm số

c) Tọa độ điểm cao nhất là (1; 4).

Phương trình trục đối xứng của parabol là: x = 1.

Đồ thị hàm số đó quay bề lõm hướng xuống dưới. 

Lời giải bài tập Toán 10 Bài 2: Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng hay khác:

Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Cánh diều khác