Giải Toán 10 trang 18 Tập 1 Cánh diều
Với Giải Toán 10 trang 18 Tập 1 trong Bài 2: Tập hợp. Các phép toán trên tập hợp Toán 10 Cánh diều hay nhất, chi tiết sẽ giúp học sinh lớp 10 dễ dàng làm bài tập Toán 10 trang 18.
Bài 1 trang 18 Toán lớp 10 Tập 1: Cho tập hợp X = {a; b; c}. Viết tất cả các tập con của tập hợp X.
Lời giải:
Các tập hợp con của tập hợp X = {a; b; c} là:
, X, {a}, {b}, {c}, {a; b}, {a; c}, {b; c}.
Bài 2 trang 18 Toán lớp 10 Tập 1: Sắp xếp các tập hợp sau theo quan hệ “⊂”: [2; 5], (2; 5), [2; 5), (1; 5]
Lời giải:
Tập hợp [2; 5] là tập hợp gồm các số thực lớn hơn hoặc bằng 2 và nhỏ hơn hoặc bằng 5.
Tập hợp (2; 5) là tập hợp gồm các số thực lớn hơn 2 và nhỏ hơn 5.
Tập hợp [2; 5) là tập hợp gồm các số thực lớn hơn hoặc bằng 2 và nhỏ hơn 5.
Tập hợp (1; 5] là tập hợp các số thực lớn hơn 1 và nhỏ hơn hoặc bằng 5.
Do đó ta sắp xếp các tập hợp như sau:
(2; 5) ⊂ [2; 5) ⊂ [2; 5] ⊂ (1; 5].
Bài 3 trang 18 Toán lớp 10 Tập 1: Xác định các tập hợp sau và biểu diễn chúng trên trục số:
a) [– 3; 7] ∩ (2; 5);
b) (– ∞; 0] ∪ (– 1; 2);
c) \ (– ∞; 3);
d) (– 3; 2) \ [1; 3).
Lời giải:
a) Do (2; 5) ⊂ [–3 ; 7] nên giao của hai tập hợp [–3; 7] và (2; 5) là khoảng (2; 5)
Vậy [– 3; 7] ∩ (2; 5) = (2; 5) và được biểu diễn là:
b) Ta có: (– ∞; 0] = {x | x ≤ 0}
(–1 ; 2) = {x | –1 < x < 2}
Khi đó (– ∞; 0] ∪ (–1 ; 2) = {x | x ≤ 0 hoặc – 1 < x < 2} = {x | x < 2} = (– ∞; 2)
Vậy (– ∞; 0] ∪ (– 1; 2) = (– ∞; 2) và được biểu diễn là:
c) Tập hợp \ (– ∞; 3) là tập hợp các số thực không thuộc khoảng (– ∞; 3)
Vậy \ (– ∞; 3) = [3; + ∞) và được biểu diễn là:
d) Tập hợp (– 3; 2) \ [1; 3) gồm các phần tử thuộc (– 3; 2) và không thuộc [1; 3).
Vậy (– 3; 2) \ [1; 3) = (– 3; 1) và được biểu diễn là:
Bài 4 trang 18 Toán lớp 10 Tập 1: Gọi A là tập nghiệm của phương trình x2 + x – 2 = 0, B là tập nghiệm của phương trình 2x2 + x – 6 = 0.
Tìm C = A ∩ B.
Lời giải:
+ Giải phương trình x2 + x – 2 = 0
Ta có: ∆ = 12 – 4 . 1 . (– 2) = 1 + 8 = 9
Suy ra phương trình có hai nghiệm x1 = 1 và x2 = – 2.
Ta viết tập hợp A như sau: A = {–2 ; 1}.
+ Tương tự, giải phương trình 2x2 + x – 6 = 0 ta được 2 nghiệm là và – 2.
Do đó ta viết được tập hợp B như sau: B = {– 2; }.
+ Ta có: C = A ∩ B hay tập hợp C là giao của hai tập hợp A và B, hay mọi phần tử thuộc tập hợp C phải vừa thuộc tập hợp A vừa thuộc tập hợp B.
Vậy C = {– 2}.
Bài 5 trang 18 Toán lớp 10 Tập 1: Tìm D = E ∩ G biết E và G lần lượt là tập nghiệm của hai bất phương trình trong mỗi trường hợp sau:
a) 2x + 3 ≥ 0 và – x + 5 ≥ 0;
b) x + 2 > 0 và 2x – 9 < 0.
Lời giải:
Chú ý: D = E ∩ G hay tập hợp D là giao của hai tập hợp E và G. Ta cần tìm tập E, G bằng cách tìm tập nghiệm của các bất phương trình đã cho rồi từ đó suy ra tập hợp D.
a) 2x + 3 ≥ 0 và – x + 5 ≥ 0
Ta giải các bất phương trình.
2x + 3 ≥ 0 ⇔ x ≥
Khi đó E = .
– x + 5 ≥ 0 ⇔ x ≤ 5
Khi đó G = {x | x ≤ 5} = (– ∞; 5]
Vậy D = E ∩ G = = .
b) x + 2 > 0 và 2x – 9 < 0
Ta có: x + 2 > 0 ⇔ x > – 2
Khi đó E = {x | x > – 2} = (– 2; + ∞)
Lại có: 2x – 9 < 0
Khi đó G =
Vậy .
Bài 6 trang 18 Toán lớp 10 Tập 1: Gọi A là tập nghiệm của đa thức P(x). Viết tập hợp các số thực x sao cho biểu thức xác định.
Lời giải:
A là tập nghiệm của đa thức P(x).
Suy ra A = {x | P(x) = 0}.
Biểu thức xác định khi P(x) ≠ 0.
Do đó tập hợp các số thực x sao cho biểu thức xác định chính là tập hợp các số thực không thuộc A.
Gọi B là tập hợp các số thực x sao cho biểu thức xác định.
Vậy B = = .
Bài 7 trang 18 Toán lớp 10 Tập 1: Lớp 10B có 28 học sinh tham gia câu lạc bộ thể thao và 19 học sinh tham gia câu lạc bộ âm nhạc. Biết rằng có 10 học sinh tham gia cả hai câu lạc bộ trên.
a) Có bao nhiêu học sinh ở lớp 10B tham gia câu lạc bộ thể thao và không tham gia câu lạc bộ âm nhạc?
b) Có bao nhiêu học sinh ở lớp 10B tham gia ít nhất một trong hai câu lạc bộ trên?
c) Biết lớp 10B có 40 học sinh. Có bao nhiêu học sinh không tham giac câu lạc bộ thể thao? Có bao nhiêu học sinh không tham gia cả hai câu lạc bộ?
Lời giải:
a) Có 10 bạn học sinh tham gia cả hai câu lạc bộ thể thao và âm nhạc, do đó trong 28 bạn học sinh tham gia câu lạc bộ thể thao của lớp 10B thì có 10 bạn tham gia cả câu lạc bộ âm nhạc.
Vậy số học sinh tham gia câu lạc bộ thể thao và không tham gia câu lạc bộ âm nhạc của lớp 10B là: 28 – 10 = 18 (học sinh).
b) Số học sinh tham gia ít nhất một trong hai câu lạc bộ là:
28 + 19 – 10 = 37 (học sinh).
c) Lớp 10B có tất cả 40 học sinh, trong đó có 28 bạn tham gia câu lạc bộ thể thao, nên số học sinh không tham gia câu lạc bộ thể thao là:
40 – 28 = 12 (học sinh)
* Tính số học sinh không tham gia cả hai câu lạc bộ
TH1: Theo câu b, ta thấy có 37 học sinh tham gia ít nhất một trong hai câu lạc bộ nên số học sinh không tham gia cả hai câu lạc bộ (không tham gia bất kì câu lạc bộ nào) là:
40 – 37 = 3 (học sinh)
TH2: Học sinh không tham gia đồng thời cả hai câu lạc bộ thì số học sinh đó sẽ là:
40 – 10 = 30 (học sinh)
Bài 8 trang 18 Toán lớp 10 Tập 1: Một nhóm có 12 học sinh chuẩn bị cho hội diễn văn nghệ. Trong danh sách đăng kí tham gia tiết mục múa và tiết mục hát của nhóm đó, có 5 học sinh tham gia tiết mục múa, 3 học sinh tham gia cả hai tiết mục. Hỏi có bao nhiêu học sinh trong nhóm tham gia tiết mục hát? Biết 4 học sinh của nhóm không tham gia tiết mục nào?
Lời giải:
Trong nhóm có 4 bạn không tham gia tiết mục nào nên số bạn trong nhóm tham gia hát hoặc múa là: 12 – 4 = 8 (bạn)
Trong 8 bạn trên, có 5 bạn học sinh tham gia múa, vậy số học sinh không tham gia tiết mục múa nhưng có tham gia tiết mục hát là: 8 – 5 = 3 (bạn)
Vì có 3 học sinh tham gia cả hai tiết mục, nghĩa là 3 bạn này thuộc trong nhóm 5 học sinh tham gia tiết mục múa, đồng thời khác với 3 bạn tham gia tiết mục hát nhưng không tham gia tiết mục múa.
Do vậy, số bạn trong nhóm tham gia tiết mục hát là: 3 + 3 = 6 (bạn)
Vậy có 6 học sinh tham gia tiết mục múa.
Lời giải bài tập Toán 10 Bài 2: Tập hợp. Các phép toán trên tập hợp hay khác:
- Giải Toán 10 trang 12 Tập 1
- Giải Toán 10 trang 13 Tập 1
- Giải Toán 10 trang 14 Tập 1
- Giải Toán 10 trang 15 Tập 1
- Giải Toán 10 trang 16 Tập 1
Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 10 hay khác:
- Giải sgk Toán 10 Cánh diều
- Giải Chuyên đề học tập Toán 10 Cánh diều
- Giải SBT Toán 10 Cánh diều
- Giải lớp 10 Cánh diều (các môn học)
- Giải lớp 10 Kết nối tri thức (các môn học)
- Giải lớp 10 Chân trời sáng tạo (các môn học)
- Soạn văn 10 (hay nhất) - Cánh diều
- Soạn văn 10 (ngắn nhất) - Cánh diều
- Soạn văn 10 (siêu ngắn) - Cánh diều
- Giải sgk Toán 10 - Cánh diều
- Giải Tiếng Anh 10 Global Success
- Giải Tiếng Anh 10 Friends Global
- Giải sgk Tiếng Anh 10 iLearn Smart World
- Giải sgk Tiếng Anh 10 Explore New Worlds
- Giải sgk Vật lí 10 - Cánh diều
- Giải sgk Hóa học 10 - Cánh diều
- Giải sgk Sinh học 10 - Cánh diều
- Giải sgk Địa lí 10 - Cánh diều
- Giải sgk Lịch sử 10 - Cánh diều
- Giải sgk Kinh tế và Pháp luật 10 - Cánh diều
- Giải sgk Tin học 10 - Cánh diều
- Giải sgk Công nghệ 10 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 10 - Cánh diều
- Giải sgk Giáo dục quốc phòng 10 - Cánh diều