Cách vẽ đồ thị Parabol (siêu hay)

Với loạt bài Cách vẽ đồ thị Parabol Toán lớp 10 sẽ giúp học sinh nắm vững công thức, biết cách làm bài tập từ đó có kế hoạch ôn tập hiệu quả để đạt kết quả cao trong các bài thi môn Toán 10.

Bài viết Cách vẽ đồ thị Parabol gồm 4 phần: Lí thuyết tổng hợp, Công thức, Ví dụ minh họa và Bài tập tự luyện có lời giải chi tiết giúp học sinh dễ học, dễ nhớ Cách vẽ đồ thị Parabol Toán 10.

                                 Cách vẽ đồ thị Parabol

I. Lí thuyết tổng hợp. 

- Tập xác định của phương trình Parabol: D = R 

- Trục đối xứng của Parabol: là đường thẳng đi qua đỉnh của Parabol và song song với trục Oy có phương trình Cách vẽ đồ thị Parabol 

- Đồ thị Parabol có hai dạng: 

+) Dạng 1: a > 0 (bề lõm của đồ thị hướng lên trên)

Cách vẽ đồ thị Parabol

Hàm số y = ax2 + bx + c đồng biến trên khoảng Cách vẽ đồ thị Parabol và nghịch biến trên khoảng Cách vẽ đồ thị Parabol.

+)  Dạng 2: a < 0 (bề lõm của đồ thị hướng xuống dưới)

Cách vẽ đồ thị Parabol

Hàm số y = ax2 + bx + c nghịch biến trên khoảng Cách vẽ đồ thị Parabol và đồng biến trên khoảng Cách vẽ đồ thị Parabol.

II. Các công thức.

Cách vẽ đồ thị Parabol: y = ax2 + bx + c  

Bước 1: Vẽ trục đối xứng có phương trình Cách vẽ đồ thị Parabol.

Bước 2: Xác định tọa độ đỉnh : Cách vẽ đồ thị Parabol 

Bước 3: Xác định thêm 1 số điểm (tối thiểu 1 điểm) như giao điểm với trục tung M (0; c) (nếu có), trục hoành (nếu có) hoặc các điểm tùy ý. Sau đó lấy điểm đối xứng với các điểm điểm đó qua trục đối xứng. 

Bước 4: Vẽ đồ thị bằng cách nối các điểm lại theo dạng hình Parabol.

Lưu ý: a > 0 và a < 0 cho ra hai dạng đồ thị Parabol khác nhau. 

                        Cách vẽ đồ thị Parabol

III. Ví dụ minh họa.

Bài 1: Vẽ đồ thị Parabol: y = x2 - 4x + 5 . 

Lời giải:

- Tập xác định: D = R 

- Ta có trục đối xứng của đồ thị: Cách vẽ đồ thị Parabol 

- Xét Δ = (-4)2 - 4.1.5 = -4 => Tọa độ đỉnh I của Parabol:

Cách vẽ đồ thị Parabol

=> I (2; 1)

- Giao điểm của Parabol với trục tung: A (0; 5). Lấy thêm điểm A’(4; 5) đối xứng với A qua trục đối xứng.

- Có a = 1 > 0 , trục đối xứng x = 2 và các điểm I (2; 1), A (0; 5), A’(4; 5) ta vẽ được đồ thị: 

Cách vẽ đồ thị Parabol


Bài 2: Vẽ đồ thị Parabol: y = -x2 - 3x + 4 . 

Lời giải:

- Tập xác định: D = R  

- Ta có trục đối xứng của đồ thị: Cách vẽ đồ thị Parabol 

- Xét Δ = (-3)2 - 4.(-1).4 = 25 => Tọa độ đỉnh I của Parabol:

Cách vẽ đồ thị Parabol

- Giao điểm của Parabol với trục tung: B (0; 4). Lấy thêm điểm B’(-3; 4) đối xứng với B qua trục đối xứng.

- Có a = -1 < 0 , trục đối xứng Cách vẽ đồ thị Parabol và các điểm Cách vẽ đồ thị Parabol , B (0; 4), B’(-3; 4) ta vẽ được đồ thị:

Cách vẽ đồ thị Parabol


Bài 3: Vẽ đồ thị Parabol: y = x2 - 4x + 4. Xét tính đồng biến, nghịch biến của nó trên tập xác định. 

Lời giải:

- Tập xác định: D = R

- Ta có trục đối xứng của đồ thị: Cách vẽ đồ thị Parabol 

- Xét Δ = (-4)2 - 4.1.4 = 0 => Tọa độ đỉnh I của Parabol:

Cách vẽ đồ thị Parabol

=> I (2; 0)

- Giao điểm của Parabol với trục tung: C(0; 4). Lấy thêm điểm C’(4; 4) đối xứng với C qua trục đối xứng.

- Có a = 1 > 0 , trục đối xứng x = 2 và các điểm I (2; 0) , C (0; 4), C’(4; 4) ta vẽ được đồ thị: 

Cách vẽ đồ thị Parabol

Dựa vào đồ thị ta có thể thấy, hàm số y = x2 - 4x + 4 đồng biến trên khoảng (2;+∞) và nghịch biến trên khoảng (-∞;2).

IV. Bài tập tự luyện.

Bài 1: Vẽ đồ thị Parabol: y = 2x2 - 7x + 4. Và xét tính đồng biến, nghịch biến của nó trên tập xác định. 

Bài 2: Vẽ đồ thị Parabol: y = -3x2 - 5x + 3. Và xét tính đồng biến, nghịch biến của nó trên tập xác định.

Xem thêm các Công thức Toán lớp 10 quan trọng hay khác:


Đề thi, giáo án các lớp các môn học